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Executive Summary 

Inappropriate electric vehicle (EV) charging station (CS) placement inevitably increases operator’s costs and 

decrease Quality of Service (QoS). This paper proposes a CS placement optimization model, which aims to 

minimize the installation cost with the constraints related to QoS, i.e., maximum waiting time and CS 

reachability. To reach these targets, firstly, the driving uncertain parameters are modeled by the probability 

distributions. Next, based on the EV’s driving routes, the charging behavior, including where, when to charge, 

and charging demand are predicted. Then, the waiting time is calculated based on the queueing model with 

time-varying arrival rate, i.e., M(t)/M/s system. The model is optimized based on the genetic algorithm (GA). 

Both theoretical analysis and computational simulation are given to verify the feasibility of proposed 

optimization algorithm.  

 

Keywords: battery electric vehicle, charging infrastructure, infrastructure deployment, quality of service, 

optimization algorithm 

1 Introduction 

Recently, the global transportation system has seen a transition from traditional gasoline-powered 

vehicles to EVs, and EVs’ production and market share have been expanded to an unprecedented level [1-3]. 

The mainly reasons for the prosperity of EV industry are the increasingly awareness in reducing the reply on 

oil, utilizing the renewable sources, and combating environmental crises [4-7]. Boarder and more ambitious 

policies have been set in more than 20 countries to accelerate this transition, and the number of EV fleet is 

expected to reach 230 million in 2030 [8]. 

However, limited battery capacity requires drivers charge frequently [9, 10]. If there is a serious 

mismatch between enormous EVs and limited CSs, EV owners would suffer from severe driving anxiety, 

which is deemed as one of the dominant obstacles for ongoing EV adoption [11]. Therefore, an appropriate 

CS placement scheme with high QoS is needed to ensure a satisfactory trip [12-14]. Generally, QoS is 

evaluated by waiting time, since long waiting time brings uncomfortable charging experience. In the recent 

years, numerous researchers have delved into the CS deployment problem [15-20]. Average waiting time has 
attracted great attentions, which is regarded as the minimizing objective or considered into constraints [21-
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23]. Usually, it is calculated based on the M/M/s model in queueing theory, which assumes that the EVs’ 

arrival rate is a constant value in the time duration [24]. However, on the one hand, the average value cannot 

reflect waiting situation during the busiest period accurately. On the other hand, the traffic flow soars in peak 

hours and drops in midnight in the real world, so there is a great difference of arrival rate during one day. 

Using a constant arrival rate to calculate the average waiting time as the QoS indicator might bring errors in 

estimating, thus degrading the optimization performance of the final decision scheme.  

To tackle with above problems, this paper proposed a CS deployment optimization model using the 

M(t)/M/s model [25]. Firstly, the probability distributions are used to model the drivers’ behaviors, and hence 

the EV charging profile could be obtained. Secondly, the M(t)/M/s model with a time-varying arrival rate is 

utilized to estimate the waiting time throughout 24 hours. Thirdly, the CS placement scheme is decided based 

on GA algorithm. The main contributions of this paper are concluded as followed: 

(1) A charging behavior model is proposed. The randomness of drivers’ behavior is considered based 

on probability distributions, such as average travelling distance, arrival time, and departure time, 

etc. Whether or not to charge is determined by the State of Charge (SOC) of battery. If there is a 

charging demand but no CS along the route, the route would be re-scheduled to reach the nearest 

CS. 

(2) A CS placement optimization framework is designed. The model aims to minimize the installation 

cost, with the constraints of maximum waiting time, CS reachability and the limited number of 

servers.  

(3) The impact of using M/M/s or M(t)/M/s model on placement decisions are studied. A result of 

tolerable difference would lead to a preference using M/M/s model due to its relatively low 

computational burden, otherwise using M(t)/M/s model for a more accurate QoS indicator.  

The remainder of the paper is organized as follow. Section II introduces the methodology. The 

simulation results are presented in Section III. The conclusion is given in Section IV. 

2 Methodology  

2.1 Overview of The CS Placement Optimization Framework 

Step 1: Initialization

• The road network.

• The number of EVs and their route information.

• Probability distributions.

• Other parameters.

Step 3: Placement optimization based on GA algorithm 

• Where to deploy CSs.

• How many servers are set in each CS.

Step 2: Charge behavior Model

• Where to charge.

• When to charge.

• Charge demand.

 

Figure 1: Main procedures of proposed optimization scheme 

Fig. 1 depicts the main procedures of the proposed optimization scheme, which mainly comprising 

three steps. The first step is the initialization. The road network, the number of EV, and their route information 

should be generated. Several probability distributions should be set. Also, some other parameters are 

required, including: driving speed, energy consume per km, battery capacity, and etc. 
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 Secondly, the charging behavior of each EV is modeled. Based on the given route and the battery 

SOC, the model predicts where, when, and how much the EV will charge. The EV load profile of each CS 

could be formed based on these predictions. 

Thirdly, the waiting time during 24 hours could be calculated based on M(t)/M/s model. Based on GA, 

minimizing installation costs is the object of the model, while the maximum waiting time, CS reachability 

and capacity constraint are taken into account. The final CS placement decisions could be obtained, including 

where to deploy CSs and how many servers are installed in each CS. For a better understanding of the 

following part, the notations are defined and listed in Table 1 for easy retrieval. 

Table 1:  Notations used in the model 

Name Definition 

( , )G V A  A graph G represents the road network. V and A indicates nodes and edges 

respectively  

iv  i-th node 

ineighbours  A set of nodes that are neighbours of vi 

ix  A binary variable indicating whether the vi should be deployed a CS or not 

in  The number of charging servers at vi 

maxn  The maximum number of servers of one CS 

costinstallation  The total cost of installation 

costCS  The cost for one CS 

cost server  The cost for one charging server 

costbasic  The basic cost used in the fitness calculation 
max_ iwaiting time  The maximum waiting time of vi during 24 hours 

kR  The route of k-th EV 
ini

kSoC  The initial SOC of k-th EV 
start

kt  The start time of the Rk 
argch e

kt  The time to start charging of the k-th EV 
dep

kt  The time to depart CS of k-th EV 
access

kCS  The accessible CS along the Rk. 
decide

kCS  The decided CS of k-th EV to charge. 
demand

ke  The charging demand of k-th EV 
prob

ke  The charging demand formed based on probability distribution.  
remain

ke  The remaining energy of k-th EV at the destination. 
i

kd  The distance between start node and node vi of Rk 
sd

kd  The distance between start and destination node of Rk. 

decide

kd  The distance between start node and decided CS to charge. 

max

kd  The maximum distance that k-th EV can travel based on initial SOC 

kcap  The battery capacity of k-th EV 
chargethreshold  The charging threshold 
waitingtimethreshold  The waiting time threshold 

consumee  Energy consumed per unit distance 
charger  Charging rate 

v Velocity of the vehicles 
( )t  The arrival rate at time t 

  The service rate 
( )mp t  The probability that m customer in the system at time t 

( )W t  The delay of a customer at the start of time segment t 

s The number of servers in the system 

m The number of customers in the system 

M The maximum customer in the system 

  The weights used in the fitness calculation 
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2.2 Initialization 

This part mainly introduces the initialization of probability distributions. 

For initial SOC, arrival and departure time are described based on truncated Gaussian distributions. 

The parameters of these distributions refer [26]. The log-normal distribution function is employed to 

modelling travelling distance [27]. According to the daily travelling distance, the charging demand 

probability distribution can be obtained refers [28]. 

2.3 Charging Behavior Model 

 

The charging behavior model for one route is presented in algorithm 1. There are some assumptions 

of this model. (a) The EV can be charged immediately when arriving at the CS, regardless of the queueing 

situation. (b) The EV could travel at a constant speed, regardless of the traffic jam. (c) Only one charge for 

one route. The detailed processes of charging behavior model are described as following.  

 Firstly, the remaining energy at the destination node is calculated based on (1) 

intremain sd consume

k k k ke SOC cap d e=  −                             (1) 

If chargeremain

k ke cap threshold , indicating that the battery energy is considered sufficiently and does 

not require to be charged. For those EVs which are needed to charge, the maximum allowable travel distance 

can be calculated by (2). Then, a set of accessible CSs access

kCS  along the route can be obtained if maxi

k kd d , 

where 
i kv R and 1ix = . 

max int consume

k k kd SOC cap e=                                (2) 

One situation is that access

kCS  is not empty, meaning the k-th EV could be charged along the route 

before the energy is running out. Then, the arrival time could be calculated by (3). After obtaining a set of 

arrival time of access

kCS , the probability value could be obtained according to the arrival time probability 
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distribution, and the CS with higher probability would be selected to charge, and argch e

kt   is equal to the 

corresponding arrival time.  

i start i

k k kt t d v= +                                   (3) 

Another situation is that access

kCS  is empty, meaning there is no available CS along the route, hence 

the driver has to travel extra distance to charge their EV. Based on the route and the placement of CSs, the 

extra distance could be calculated based on the shortest path method, and the CS with least extra distance 

would be choose to charge. Specially, if there are several CSs with same extra distance, the CS selection 

would be decided by the arrival time probability value, which is introduced before. 

After decide where and when to charge, the next step is to obtain the charging demand. First, the 

energy demand prob

ke  should be formed randomly based on charging demand probability distribution. Then, 

considering charge

kt , the departure time dep

kt  should also be generated, and notice that dep

kt  should be later 

than charge

kt . Therefore, the final desired charging demand should be calculated as (4). demand

ke  should be the 

minimum value of these components: prob

ke , the energy calculated based on the start and departure time, the 

energy limited by battery capacity. 

( ) arg arg, ,demand prob ch e dep ch e ini decide consume

k k k k k k k ke Min e r t t cap SOC cap d e    =  − −  +    
         (4) 

Based on above steps, the charging time, location, and amount are obtained, and hence the EV load 

profile of each CS could be calculated. 

2.4 Optimization Problem Formulation 

The objective is minimizing the CS installation cost, which is defined is as (5). It contains cost for 

building stations and the cost for installing charging servers in the station. The constraints can be expressed 

as (6)~(8), where (6) indicates that maximum waiting time during 24 hours at node i should be less than the 

corresponding threshold; (7) means that, if node i is for a CS, the number of servers should be larger than 1 

but less than the maximum server capacity nmax; and (8) ensures the CS reachability. It shows that for each 

Rk, it must pass through more than one CS in its route, or CSs are located at neighbour nodes that drivers 

travel through.  

( )min cos mininstallation CS server

i i i

i V i V

F t cost x x n cost
 

  
= = +  

  
                   (5) 

subject to 

max_ waitingtime

iwaiting time threshold                         (6) 

max1 1i in n ,  if  x  =                                  (7)    

1
i k j i

i j

v R v neighbors

x x
 

 
+  

 
 

                                 (8)      

According to M(t)/M/s model [25], the probability pn(t) can be calculated by solving (9). The delay W(t) 

could be calculated by (10). In the CS placement task, one customer is equal as unit energy demand; arrival 

rate indicates the energy demand per unit time; service rate means the energy that a server can provide per 

unit time. 

                                         

0 0 1

1 1

1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( 1) ( ) ( ( ) ) ( ),    1

( ) ( ) ( ) ( ) ( ( ) ) ( ),    

m m m m

m m m m

p t t p t p t

p t t p t m p t t m p t m s

p t t p t s p t t s p t m s

 

   

   

− +

− +

 = − +


 = + + − +  
  = + − + 

         (9)      
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( )( )( ) 1 ( )
M

mm s
W t m s p t s

=
= − +                            (10)  

The proposed model is optimized based on GA algorithm. Firstly, a certain number of individuals are 

formed. The chromosomes of individual are the decision variables, i.e., xi and ni. Secondly, revise each 

individual to meet the constraint in (7) and (8). Specially, the waiting time constraint is realized by penalty 

method. The fitness function is (11). The first part is related to the installation cost. The real costinstallation is 

divided by a basic value costbasic, so that when installation cost is smaller, the cost fitness score is higher. The 

second part is related to the waiting time. When threshold is smaller than the calculated maximum waiting 

time, it would be negative, so the total fitness score would be decreased. When the waiting time constraint is 

satisfied, the second part is 0. The weight  and  are positive. Thirdly, Calculate the fitness score of each 

individual, and reserve the individuals with high fitness. Based on fitness, select parents to cross and mutate, 

and then update the population to next cycle. The optimization stops when converge or at the end of iterations.  

 ( )  max1 / 0,1 _ /installation basic waitingtime

ifitness cost cost Min waiting time threshold =  − +  −     (11) 

3 Simulation Results 

3.1 Simulation Setup 

4 Table 2: Parameter settings in simulation 

Parameter Value Parameter Value 

Number of vehicles 2500 Charging rate 10 kW 

Velocity 60 km/h Interval of distance probability distributions 1.6 km 

Energy consumption per km 0.6 kWh 
Interval of arrival/departure time probability 

distributions 
1/6 h 

Max number of servers nmax 300  100 

Cost of installing a server 0.2 k$  80 

Cost of building one CS 5.0 k$ 
chargethreshold  0.9 

Battery capacity 60 kWh 
waitingtimethreshold  0.5 h 
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Figure 2: Road network and traffic flow among 24 hours 

In order to validate the proposed method, computational simulation is performed by MATLAB. The 

related parameters are set as Table 2. The road network is a 3×4 grid. The routes of EVs are formed by 

several steps. Firstly, the start node and destination node are randomly selected from G. Secondly, the routes 

are generated based on the shortest path method. Thirdly, the peak hours are defined. The morning peak hours 

and evening peak hours are 7:00 to 9:00 am and 17:00 to 19:00 pm, respectively. The start time of the route 

is 31.5%, 31.5% and 37% generated from the morning, evening peak, and other hours. The traffic pattern is 

shown in Fig. 2. The color of each road segment represents the cumulative traffic flow during 24 hours. 

Namely, the darker lines have a higher traffic flow. It is assumed that the potential CS locations are nodes in 
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the road networks. Fig. 3 depicts the probability distributions [26, 28], which are used to calculate the 

charging demand of CSs. 
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Figure 3: Probability distributions. (a) Arrival and departure time. (b) Daily travel distance. (c) Energy demand 

calculated based on daily travel distance. 

4.1 Result of The Proposed Model 

By using the GA algorithm, the installation cost and waiting time of 100 cycles are shown in Fig. 4. It is 

clear the installation cost decreases at the cost of increasing of waiting time within constraint of 30 min. The 

final placement decisions are listed as Table 3. It can be found that the locations of CSs and the number of 

servers have a directly relationship with traffic flow. The total cost is 52.0 k$, and the maximum waiting time 

is around 25.3 min. The charging demand and related waiting time of CSs are shown in Fig. 5. It can be 

observed that the waiting time occurs when the charging demand accumulates to a certain level. Drivers 

require to wait for a certain time to charge during the peak hours, but less than 25.3 min, which is considered 

acceptable.  

 

Table 3: Decisions based on the proposed model 

Node of CS 6 7 10 

Number of servers 51 101 33 

Total cost (k$) 52.0 

Maximum waiting time (min) 25.3 

 

 

Figure 4: Installation cost and maximum waiting time of all CSs during 24 hours based on GA algorithm with iteration 

of 100 
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Figure 5: Charging demand and waiting time during 24 hours in different CSs. (a) CS 6. (b) CS 7. (c) CS 10. 

4.2 Comparison Between M/M/s and M(t)/M/s Model 

Also, the decision results using M/M/s model are shown in Table 4. The constant arrival rate is the mean 

value of time-varying arrival rate. Compared with the results in Table 3, Using M/M/s model can offer a 

significant drop in the numbers of servers, so the total installation cost can be reduced. However, when using 

the decisions in Table 4 to calculate the waiting time, there is a significant difference between the constant 

and time-varying arrival rate models. The waiting time is less than 2.7 min when using the M/M/s model but 

the maximum value actually higher than 50 min when cross-checking with the M(t)/M/s model as shown in 

Fig. 6, which is an unacceptable error. Therefore, it can be concluded that the waiting time is seriously 

underestimated based on the constant arrival rate model, and the corresponding decision results are overly 

optimistic. 

Table 4: Decisions based on M/M/s model 

Node of CS 6 7 10 

Number of servers 52 80 0 

Total cost (k$) 36.4 

Maximum waiting time (min) 2.7 
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Figure 6: Comparison of results using decisions based on M/M/s model. (a) Arrival rate in CS 6. (b) Arrival rate in CS 

7. (c) Waiting time in CS 6. (d) Waiting time in CS 7. 
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5 Conclusion 

The problem of CS placement optimization is studied in this paper. The charging behavior model is 

developed, which utilize probability distributions to capture the uncertainties. Based on GA, the optimization 

aims to minimizing the total installation cost with the consideration of QoS, which is indicated by maximum 

waiting time and CS reachability. The simulation results show that the CS deployment decisions are highly 

related to the traffic condition. Without considering traffic jam, the CS is more likely to build in the places 

with high traffic flow. Also, the decisions using M/M/s and M(t)/M/s model are compared. The total cost of 

M/M/s model is much lower because fewer charging servers are set. However, when using the M(t)/M/s model 

to crosscheck the waiting time, it is much higher than the result in M/M/s model. Therefore, the decisions 

based on M/M/s model are overly optimistic. It demonstrates that the proposed optimization model is effective 

and practical for the CS placement task. 
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