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Executive Summary 

The lack of public charging infrastructure still remains an important barrier for many potential EV drivers. 

With more people driving EVs, data on their charging transactions can help urban planners to improve the 

future charging infrastructure. In this paper we demonstrate how this data can be used to understand the 

temporal charging behavior at existing charging points (CPs), as well as to explain where to expect which 

type of charging behavior. Based on real-world charging session data from 392 public charging points (CPs) 

in the Brussels Capital Region, we find that CPs can be classified into four behavioral clusters based on their 

connection profile. Furthermore, we find that spatial variables describing the land-use, socio-economic and 

mobility related factors of the CP’s location significantly correlate to its temporal behavior. These results can 

be used for urban planners that seek a data-driven expansion of their public charging infrastructure.  
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1 Introduction 

To improve local air quality and reduce the impact of climate change, many regions have implemented 

policies to ban the sale of petrol and diesel vehicles over the coming decade(s) [1]. The feasibility of 

achieving these goals will largely depend on the mass adoption of Electric Vehicles (EVs). However, three 

main barriers have been identified that hinder the transition from Internal Combustion Engine Vehicles 

(ICEVs) to EVs, being the limited driving range, the high purchase price and the lack of Charging 

Infrastructure (CI). While technological advancements and the decreasing cost of battery packs are mitigating 

the former two barriers [2, 3], the general lack of CI still remains an important hurdle for the transition 

towards EVs. Installing sufficient public CI is of significant importance, especially in densely populated 

urban areas, where many people are living in multi-dwelling houses and have no access to private home 

charging [4]. 

As installing public CI requires significant resources [5], it is of utmost importance that urban planners 

carefully consider where to install which type of charging infrastructure. In this paper, we demonstrate how 

historical charging data can be used to help urban planners answer these questions. First, based on a real-

world charging dataset from 392 public charging points (CPs) in the Brussels Capital Region, we use 

clustering analysis to cluster CPs according to their temporal charging behavior. Second, these clusters are 

explained in a regression model using spatial variables that describe the land-use, socio-economic and 
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mobility related factors of the CP’s location. Descriptive statistics on the first-stage clustering results reveal 

the underlying behavior, while the results from the second-stage regression model inform planners on where 

to expect which type of charging behavior. 

The remaining of the paper is organized as follows. Section 2 discusses what research has already been done 

on this topic and how our work relates to this. In section 3 and 4, the data and methodology of this study are 

respectively described. Finally, the results together with a discussion are presented section 5, followed by the 

conclusions in section 6. 

2 Literature review 

Existing research has focused on charging behavior in various ways. One line of research that utilizes survey 

data has revealed the charging preference for different charger locations and -types [6, 7]. Lee, et al. [6] 

conduct a survey on EV drivers in California to reveal their choice of charging location, after which they use 

regression modelling to explain the location choice. Their results show that most EV drivers rely solely on 

home charging, and that the choice of charging location is furthermore influenced by a range of factors, 

including socio-demographics, vehicle attributes, travel behavior, electricity cost at home, and the 

accessibility of workplace and home charging. Anderson, et al. [7] analyze charging behavior based on a 

survey of German EV drivers. Similar as in [6], the authors found home charging to be the most occurring 

type of charging, and that in general insufficient public charging infrastructure is found near the end 

destination of the EV driver. 

Another line of research studies charging behavior from historical charging session data. These datasets 

typically originate from one specific type of infrastructure, with the majority being public AC charging 

stations. Two research directions in the literature can be identified. On the one hand, studies that focus on 

supervised methods and use the charging data as a labeled dataset to predict EV charging demand [8-11]. 

This is done by relating the observed charging demand (measured either in kWh or connection time) with 

variables that describe the near surrounding of the charging station. These studies have shown that charging 

demand is related to a multitude of surrounding factors, including: EV adoption [8], socio-demographics 

(with income and housing type as main drivers) [9], parking behavior [10] and Points-of-Interest (POI) [11]. 

On the other hand, research has used unsupervised methods combined with historical charging data to identify 

patterns of charging behavior. The strategy of clustering is used to group together CPs with similar charging 

behavior into groups called ‘clusters’. Xydas, et al. [12] have used K-means to cluster CPs based on their 24 

one-hour power intervals, and find (depending on the use case) 3-6 clusters. Related to this, Friese, et al. [13] 

use agglomerative clustering based on each CP’s 144 ten-minute connection intervals. This results in four 

clusters of charging stations have been found, labeled as nighttime, daytime, evening, and late morning.  

Based on the existing literature it is clear that charging behavior has already been analyzed from different 

perspectives, based on either surveys or charging session data. However, less is known on the spatial factors 

that explain why certain behavior is observed at certain locations. A limited analysis is given only by Friese, 

et al. [13] who use a random forest classification model to predict charging behavior from socio-demographic 

predictors. However, no statistical analysis is given on the significance of the variables included, and they 

furthermore neglect other relevant factors such land-use and mobility variables. In this study, we bridge this 

gap in the literature by first clustering CPs based on their observed temporal charging behavior, after which 

we identify the land-use, socio-economic and mobility related factors explaining this behavior. 

3 Data 

The charging dataset used for clustering CPs is described in section 3.1, followed by a description of the 

predictor dataset used in the regression model in section 3.2. 

3.1 Charging dataset 

This study uses a dataset of charging sessions at level 2 public CPs located in the Brussels Capital Region 

(referred to as Brussels). Only data from the last 12 months (Dec. 2021 – Nov. 2022), and recorded on 
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weekdays is used. This because charging behavior can change significantly between weekdays and weekends 

[14]. After removing charging sessions with missing or illegal values, and all CPs that were installed after 

December 1st, 2021 (so as to only include only CPs that were active during the full period of observation), 

the dataset includes a total of 392 charging points, distributed over 197 charging stations1. We study the 

temporal charging behavior of CPs by analyzing their mean half-hour connection bins over the period of 

observation (referred to as their usage- or connection profile). The connection profile of each CP is calculated 

in two main steps, as is illustrated in Figure 1. First, based on each charging session’s start- and end datetime, 

the dataset is converted into half hour connection bins. For each bin, the connection time is calculated as the 

proportion of time that the session was active within this bin (which is ≤ 1 for the bin in which the session 

started and/or ended, and = 1 for all bins in between). For all time bins where the CP was not in use, the 

connection is set equal to 0. Second, for each CP and for each time bin, the overall mean connection is 

calculated. This results in a final dataset that has 392 observations (i.e., CPs) and 48 features (i.e., half hour 

time bins). 

 
Figure 1: Overview of data manipulations. 

As the purpose of this study is to classify CPs based on their temporal charging behavior, all connection bins 

are furthermore normalized so that all bins from the same CP sum up to one. This means that the connection 

profiles only reflects the CP’s relative temporal usage, and not its absolute ‘popularity’ (i.e., high vs. low 

utilization). Before entering the clustering model, the connection profiles of all CPs are smoothed with a 

Gaussian filter of 1 standard deviation, which is recommended when clustering usage profiles [15]. 

3.2 Predictor dataset 

In the second stage, explanatory variables are collected that measure the near surrounding of each CP in terms 

of its land-use, socio-economics, and mobility characteristics. An overview of these variables is given in 

Table 1. The spatial level of detail at which the variables are gathered is given in the column ‘spatial 

granularity’. As each CP has a specific location, the explanatory variables need to be spatially mapped with 

the CPs coordinates. The columns ‘geometry’ and ‘CP mapping’ respectively indicate the geometry type and 

associated mapping strategy of each variable. The ‘buffer zone’ strategy means that a circular buffer zone of 

radius 𝑟 is constructed around each CP, and that the values of variables are calculated based on the intersection 

of the variable’s geometry with the buffer polygon (see Figure 2 for an example). A radius of 𝑟 = 300 meters 

is chosen based on previous research [8]. The ‘exact mapping’ strategy means that the values of variables are 

determined by a one-to-one match between the CP’s coordinates and the variable’s geometry. For instance, 

to determine the parking demand per CP, the parking demand at the exact location where the CP is located is 

taken. All spatial mapping is implemented in Python using the GeoPandas package. Finally, in order to 

mitigate the impact of outliers and skewed distributions, transformations are applied to some variables as 

indicated by the ‘Transformations’ column. This is done based on a visual inspection of the variable’s 

distribution. Before entering the regression model, all variables are furthermore standardized to improve 

comparability across coefficients.  

 
1 Every charging station has two charging points, however, two stations were found where sufficient data was only 

available for one CP.  
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Table 1: Overview of the second stage predictor variables. 

Variable Description Spatial 

granularity+ 

Geometry CP mapping Transformation* Source 

Land-use       

Population density The number of residents per km2. Statistical sector Polygon Buffer zone - Statbel, 2020 

On-street parking 

demand at night 

The occupancy rate of the on-street parking places between 5-

7am and 8-10pm. 

Street side Line Exact mapping Truncate outliers, 

Log transform 

Brussels mobility, 

2018 

On-street parking 

demand at day 

The occupancy rate of the on-street parking places between 

10am-12pm and 3-5pm. 

Street segment Line Exact mapping Truncate outliers, 

Log transform 

Brussels mobility, 

2018 

Off-street parking The number of off-street parking places used for housing. Building block Polygon Buffer zone Log transform Brussels mobility, 

n.d. 

Residential area The percentage of area that is classified as '(highly-) residential' 

according to the administrative land-use plan. 

Building block Polygon Buffer zone - Brussels 

perspective, 2018 

CBD area The percentage of area that is classified as 'central business 

district' according to the administrative land-use plan. 

Building block Polygon Buffer zone Log transform Brussels 

perspective, 2018 

POI count The count of Points-of-Interest. Exact Point Buffer zone Log transform Open Street Maps, 

2023 

Socio-economic       

Income The median income in euro of the residents. Statistical sector Polygon Buffer zone - Statbel, 2019 

Education The percentage of residents with a higher education. Statistical sector Polygon Buffer zone - Statbel, 2017 

House owners The percentage of residents living in owned dwellings. Statistical sector Polygon Buffer zone - Statbel, 2017 

Household size The number of persons per household. Statistical sector Polygon Buffer zone - Statbel, 2016 

Males The percentage of male residents. Statistical sector Polygon Buffer zone - Statbel, 2020 

Foreigners The percentage of non-Belgian nationality residents. Statistical sector Polygon Buffer zone - Statbel, 2020 

Age The median age of the residents. Statistical sector Polygon Buffer zone - Statbel, 2020 

Mobility       

Salary cars The number of salary registered to the residents. Statistical sector Polygon Buffer zone - Statbel, 2020 

Incoming 

commuters 

The number of incoming commuters from the Census survey. Statistical sector Polygon Buffer zone Log transform Statbel, 2011 

Incoming 

movements 

The total sum of all trips that end in a region, based on cell 

phone data. 

Traffic analysis 

zones 

Polygon Buffer zone Log transform Proximus, 2019 

* If the variable contains at least one zero value, the log transform was applied as log(𝑥 + 1). 
+ Brussels has an area of 161.38 km2. The mean spatial level of details are as follows: Statistical sector: +/- 0.22 km2; Building block: 0.03 km2; Traffic analysis zone: 0.18 km2
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Figure 2: Example of 'buffer zone' strategy for the variable ‘House owners’. 

4 Methodology 

First, the temporal analysis to cluster the connection profiles is described in section 4.1, followed by the 

spatial analysis to identify the factors explaining the connection profile in section 4.2.  

4.1 Temporal: Clustering connection profiles 

In this paper we use K-means clustering to identify clusters of CPs that have a similar connection profile. K-

means clustering is an unsupervised learning method that iteratively groups together observations by 

minimizing the distance between observations of the same cluster [16]. That is, observations are assigned to 

clusters by minimizing the total within-cluster sum of squared distances (𝑊𝑆𝑆): 

 𝑊𝑆𝑆 = ∑ ∑ (𝒙𝑖 − 𝝁𝑘)
2

𝒙𝑖∈𝐶𝑘𝑘∈𝐾

 (1) 

where 𝐾 is the number clusters, 𝒙𝑖  is the 𝑖th observation belonging to cluster 𝐶𝑘, and 𝝁𝑘 is the mean of 𝐶𝑘, 

defined as the centroid of cluster 𝑘. One difficulty of K-means clustering is that the number of clusters 𝐾 

needs to be chosen a priori. Different methods are available to help determining its optimal value, such as the 

Elbow plot and Davies-Bouldin score. More information on these techniques can be found in [17, 18]. The 

clustering model is implemented in Python using scikit-learn package. 

4.2 Spatial: Multinominal regression 

Next, after all CPs are assigned to clusters based on their connection profile, a Multinominal Logit Model 

(MLM) is fitted to identify the factors driving the observed profile. This model is useful when the dependent 

variable is nominal and has more than two categories. MLM estimates the probability that a charging point 𝑖 
belongs to cluster 𝑘 as: 

 p𝑖𝑘 = Pr(𝑦𝑖 = 𝑘|𝒛𝑖) =
exp(𝒛𝑖

′𝜷𝑘)

∑ exp(𝒛𝑖
′𝜷𝑘)𝑘∈𝐾

 (2) 

where 𝒛𝑖 is the vector of land-use, socio-economic and mobility variables that explain the observed 

connection profile, 𝑦𝑖 is the outcome variable that contains the cluster number, and 𝜷𝑘 is the coefficient 

vector. However, equation (2) specifies one equation for each 𝑘 ∈ 𝐾, of which only 𝐾 − 1 can be determined 

[19]. This means that before running the MLM, a reference cluster has to be chosen for which 𝜷𝑘 is set to 0. 

The estimated coefficients for the other clusters are expressed relative to the reference cluster. The Stata 

package mlogit is used to perform the regression analysis. 
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5 Results & discussion 

5.1 Identifying usage patterns 

Before running the K-means clustering model, the number of clusters needs to be chosen. The elbow plot 

(Figure 3) does not show an obvious sharp drop, although it seems that the inertia starts leveling off around 

4 clusters. Looking at the Davies-Bouldin plot (Figure 4), it shows that the scores have a sharp increase after 

cluster 4, after which they become relatively constant. Based on these plots and the results from previous 

studies (between 3-6 clusters are found in [12, 13]), the number of clusters is chosen as 𝐾 = 4. 

 
Figure 3: Elbow plot. 

 
Figure 4: Davies-Bouldin plot.  

The results of the K-means algorithm are given in Figure 5 to Figure 8 below. The thin lines on the figures 

show the individual connection profiles of the CPs belonging to that cluster, while the thick bold line shows 

the average of all individual profiles (referred to as the usage- or connection pattern). CPs in cluster 1 are 

mostly used during the daytime, with a first peak in the late morning and a second peak in the evening. Cluster 

2 contains CPs that are used mostly during the nighttime, and less during the day. The CPs in cluster 3 are 

found to have a ‘flat’ connection profile, with a slight decrease during the morning and the late afternoon. 

This most likely reflects the time when most people start their trips. Finally, cluster 4 contains CPs that are 

used almost solely during business hours. 

 
Figure 5: Business hours- and evening usage. 

 
Figure 6: Night usage. 

 
Figure 7: Equal day- and night usage. 

 
Figure 8: Business hours usage. 
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Descriptive statistics on the duration, volume, start hour and unique users are respectively given in Figure 9 

to Figure 12. It is apparent that besides the different connection patterns observed between the clusters, the 

consumed energy volume per session is strikingly similar across all clusters. This lack of relationship between 

connection times and consumed energy has also been found by previous studies [10, 14] and indicates the 

mixed purpose of CPs to serve both a mobility demand as well as parking demand. In terms of duration and 

start hour, cluster 2 and cluster 4 are found as two ‘extremes’. Cluster 2 is used most often for longer sessions 

that start in the evening, while cluster 4 is used for shorter sessions starting in the morning. From a user 

behavior perspective, this means that low-power CPs would most likely be able to suit the needs of EV drivers 

at cluster 2, while high-power CPs might better suit EV drivers at cluster 4. Clusters 1 and 3 are found to be 

hybrids of these extremes. Finally, looking at the unique users observed per CP, cluster 2 clearly stands out 

as having less unique visitors compared to the others. This might be explained by the fact that CPs in this 

cluster are typically used by the same set of EV drivers, that most likely live nearby the CP and use it to 

charge their vehicle overnight [10].  

 
Figure 9: Distribution of duration per session. 

 
Figure 10: Distribution of volume per session.2 

 
Figure 11: Distribution of start hour per session. 

 
Figure 12: Distribution of unique users per CP.2 

5.2 Explaining usage patterns 

Regression results are given in Table 2. Since cluster 3 (equal usage over day and night) has an overall flat 

connection pattern, it is used as the reference category, and thus no estimates are given for this cluster. The 

coefficient estimates of the other clusters reflect the likelihood of belonging to this cluster relative to the 

reference cluster. To ensure that multicollinearity does not affect the outcome, the variance influence factor 

(VIF) of each predictor has been calculated. This resulted in omitting the variables income and education as 

their VIF score was larger than 5. 

Regarding cluster 1 (higher usage during business hours and evening), it are mostly the population density 

and socio-economic variables that explain the presence of this behavior type. This connection pattern is more 

likely to occur in areas with a lower proportion of home owners, a higher mean household size and a higher 

proportion of foreigners. Interestingly, all these factors have been found to be negatively associated with EV 

 
2 To preserve the confidentiality of the data, the x-axis is rescaled between 0 and 1. 
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adoption by previous studies [20, 21]. This may indicate that a higher CP usage during business hours and 

evening is more likely to occur in regions with less EV adoption. Population density has a significant negative 

effect on the likelihood of this cluster. 

Looking at cluster 2 (higher usage during the night), its presence can be explained by all mobility variables 

and some land-use variables. Estimations show that a higher number of salary cars, lower number of 

incoming commuters and lower number of incoming movements are associated with nighttime CP usage. 

This seems to characterize mostly residential areas with higher levels of EV adoption, as salary vehicles are 

more likely to be electric given their tax deductibility [22]. Areas with a higher population density and less 

off-street parking places also have a significant positive impact on a nighttime connection pattern. This 

characterizes areas where people are less likely to have home charging available.  

Finally, cluster 4 (higher usage during business hours) is mostly explained by land-use characteristics of the 

surrounding area. The parking behavior observed at the location of the CP seems to be an important indicator, 

with higher on-street parking demand during the day and lower demand during the night being positively 

associated with this pattern. This makes sense as the CPs in this cluster are almost solely being used during 

the day. The presence of a Central Business District (CBD) nearby, a lower population density, and, 

surprisingly, a lower POI count increase the likelihood of observing this cluster. While the former two factors 

indicate that this pattern occurs more in business areas with less residents, the negative effect of the POI 

variable is unexpected. One may expect that more POIs to visit nearby, would result in a higher likelihood of 

cluster 4 since this cluster mainly includes shorter sessions during the day. A potential reason for the negative 

coefficient could be the large variety of categories included in the POI variable, ranging from categories that 

relate to short-term visits (i.e., shopping) and long-term visits (i.e., accommodation). Finally, higher 

household sizes, a higher proportion of males and less salary cars have increase the probability of this cluster. 

Table 2: Multinominal Logit Model results. 

 

    

 Cluster 1 

Business hours- and 

evening usage 

Cluster 2 

Night usage 

Cluster 3 

Equal day- and 

night usage 

Cluster 4 

Business hours 

usage 

Land-use     

Population density -0.599* 0.867*  -1.047 

On-street parking demand at night -0.069 0.459  -3.275* 

On-street parking demand at day -0.283 -0.362  2.578* 

Off-street parking -0.151 -0.487*  -0.223 

Residential area -0.108 0.210  -0.311 

CBD area 0.228 -0.043  1.901* 

POI count -0.303 -0.298  -1.929* 

Socio-economic     

House owners -0.710* 0.492  0.104 

Household size 1.087* -0.261  2.314* 

Males 0.200 -0.281  3.174* 

Foreigners 0.804* 0.253  0.837 

Age 0.321 -0.236  1.309 

Mobility     

Salary cars -0.107 0.425*  -3.026* 

Incoming commuters 0.030 -0.973*  -0.369 

Incoming movements -0.007 -0.620*  -0.615 

Intercept -1.158* -0.934*  -9.396* 

Observations 392    

Chi2-test 280.74    

Pseudo R2 0.30    

Note: coefficients in bold and marked with * are found significant at the 0.05 level. 
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6 Conclusion 

In this study we demonstrated how analyzing charging session data can guide urban planners in the 

development of new charging infrastructure. First, K-means clustering was used to identify distinct 

connection patterns. Four clusters of CPs were identified, which range from the one extreme of being used 

almost solely at night for longer sessions to the other extreme of being used during the day for shorter 

sessions. While the clusters have different start time and duration distributions, the consumed volume is 

surprisingly similar across all clusters. This might indicate the intertwined usage of CPs for both parking and 

mobility, and the need for different types of charging infrastructure. CPs in cluster 2 (night usage) could meet 

user needs with lower power levels compared to CPs in cluster 4 (business-hour usage). 

Second, in a Multinominal Logistic regression model, the cluster of each CP is explained based on the CPs 

location as characterized by its land-use, socio-economic and mobility variables. The model shows that all 

categories of variables possess explanatory power on the connection pattern of the CP. Nighttime usage was 

mainly explained by mobility related variables, business-hour usage by land-use variables and the hybrid 

cluster (business-hours and evening usage) by the socio-economic variables. When deciding on where to 

install new chargers, urban planners should consider all these variables to predict which connection pattern 

is most likely to occur, and thereupon which type of charger is most suitable for this location. 

Finally, this research has some limitations. First, we used K-means clustering as it is a powerful and 

straightforward method, often used for unsupervised modelling. However, it might be that other more 

advanced clustering methods are better suited, possibly resulting in a different number of optimal clusters. 

Second, our study limits to analyzing the weekday connection patterns of CPs. An interesting approach for 

future research would be to also analyze how weekend behavior is different from weekdays. 
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