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Executive Summary 

CO2 emission standards in the European Union necessitate the introduction of zero-emission trucks. Battery 

electric trucks are one promising alternative to diesel trucks. However, a public fast charging infrastructure 

is necessary for operation. Existing charging infrastructure models do not contain restrictions regarding the 

maximum size of a single charging location, leading to unrealistically large locations. Here, we integrated a 

capacity constraint derived from the available parking lots and applied the resulting model to 236,000 origin-

destination traffic flows. Considering a vehicle range of 300 km, we identified 124 optimal charging locations 

with approximately 12,000 charging points in Germany. Hence, our locations are still quite large, but feasible 

from the perspective of available parking space. Without the capacity constraint, 42 charging locations could 

serve Germany. 
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1 Motivation 

European Union (EU) legislation mandates that CO2 emissions from newly registered heavy-duty vehicles 

have to be reduced by a least 30% by 2030 compared to 2019 [1]. This will require up to 22% of newly 

registered heavy-duty vehicles to be zero-emission vehicles, i.e. battery-electric or hydrogen powered 

vehicles [2]. For the diffusion of battery-electric trucks (BET), the available charging infrastructure is of 

decisive importance [3, 4]. Therefore, the European Commission plans a charging infrastructure ramp-up in 

the member states of the EU [5]. At the same time, public parking areas for trucks are already scare today. 

For example, Germany lacks more than 23,000 parking lots for trucks [6].  

Infrastructure modelling can be divided into three streams: node-based, path-based, and tour-based models 

[7, 8]. Node-based models locate facilities - i.e. charging locations - to meet the demand of neighbouring 

nodes - i.e. vehicles with a need for charging. Combining a node-based model with queuing theory, [9] 

distribute charging locations for battery electric trucks in the EU. They define a network of 660 to 1,486 

charging stations with up to 18 charging points per station for 2030. In total, [9] derive approximately 5,000 

megawatt charging points (megawatt charging system - MCS). However, since local traffic volumes at regular 

nodes in the road network are used, any information about individual trips is lost. In contrast, path-based 

models are based on traffic flows within a network. They try to cover a maximum of passing traffic with a 
minimum of stations. To do this, they use the information about the distance the vehicles have already 
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travelled at any position in the network. For example, a flow-refuelling location model (FRLM), a subset of 

path-based models, has been used to model charging infrastructure for battery electric cars in the USA [10]. 

[11] applied this approach to fuel cell trucks and added a capacity restriction that prescribes a maximum 

dispensing quantity per station. [12] shows that the node-capacitated flow-refuelling location model (NC-

FRLM) proposed by [11] can - under unfavourable conditions - result in vehicles refuelling more energy than 

they can transport. No adjustments have been made by [12], since a redefinition would significantly increase 

the computational effort. Finally, tour-based models rely on individual driving profiles. Typically, journey 

logs with multiple paths per vehicle serve as input. Due to the high data and computational effort, these 

models are typically used for small fleets and limited areas. For example [13] use driving profiles to model 

a slow-charging infrastructure for cars in the city of Columbus (OH, USA). Based on simplified synthetic 

trip chains and legal requirements, The approach of [14] can also be considered as a tour-based model .Based 

on simplified synthetic trip-chains and legal requirements, [14] calculate necessary truck stops. They find 

9,000 MCS charging points and about 40,000 overnight charging points (combined charging system - CCS) 

suitable to serve Europe in 2030. Charging stations can be found almost everywhere along European 

highways. This is consistent with findings from [15] which show that today trucks park almost everywhere. 

In summary, estimates for a future dense fast charging infrastructure for BET exist. However, to the authors’ 

knowledge, there is no estimate regarding the minimum number of charging locations needed to enable long-

distance electric trucking. Yet, this knowledge is important to support the required rapid market diffusion of 

BET.  

The aim of this paper is to design a minimum public fast charging network for battery electric trucks in 

Germany, taking limited parking capacities into account. For this purpose, we enhance the NC-FRLM and 

combine it with a queuing model. 

We thus extend the existing literature by content-related and methodological aspects. First, we consider 

actually available parking capacities for recharging stations for battery electric trucks. Second, we improve 

the approach from [11] and ensure that a maximum amount of energy can be recharged that fits into the 

battery.  

2 Data and methods 

In the following, we present the datasets and the most important assumptions for our modelling. Afterwards, 

we show our methodological approach.   

2.1 Data 

The calculation of a charging network for battery-electric trucks relies on origin-destination-data for trucks 

in Europe. An updated version of the ETISplus data - a project that modelled traffic flows in 2010 - serves as 

basis [16]. The dataset covers 1,675 regions all over Europe and 1.5 million origin-destination paths. In 

accordance with [9], we assume a maximum electric range of 300 km, suitable for 4.5 hours of driving. This 

corresponds to the maximum driving time in Europe before a mandatory break of 45 minutes is required. 

Paths that are shorter than 300 km do no need to be recharged and are therefore not relevant for public fast 

charging infrastructure. The paths that need to be recharged are shown in Figure 1, based on 2030 data from 

[16]. In accordance with [17] and to keep the problem solvable, we only consider flows that are served at 

least once a week (>50 trucks/a). This reduces the number of paths in Europe from 1.4 million and 172 billion 

vehicles kilometres travelled to 374,000 flows and 156 billion kilometres travelled. For Germany, we receive 

236,000 flows. While keeping more than 90% of the vehicles kilometres travelled, we significantly reduced 

the number of flows. 
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Figure 1: Europe-wide traffic flows longer than 300 km, based on [16] 

 

Regarding the parking capacity, the Autobahn GmbH, the operator of the German highway infrastructure, 

provided data on the availability of truck parking areas. The maximum hourly throughput of vehicles at 

parking areas is derived from the parking capacity using queuing theory. For the queuing model used, please 

refer to [9]. in accordance with [9], we assume an average charging time of 30 min, an average waiting time 

of 5 min, and a peak traffic of 6% of the daily traffic in the peak hour of the day.  

Finally, we assume a maximum electric range of 300 km, suitable for 4.5 hours of driving. Trucks can 

recharge at origin and destination and start fully charged. As mentioned, fast charging can be done within 30 

minutes (megawatt charging). For our calculation, we also expect all truck traffic to be battery-electric in the 

long term. 

2.2 Methods 

The modelling consists of two steps. First, we calculate a Europe-wide charging network. Second, we 

calculate a charging network for Germany, taking the available parking areas as an additional constraint into 

account.  

The European charging network is calculated as a flow-refuelling location model (FRLM). The objective 

function of the mixed-integer optimization model minimizes the number of necessary charging locations. 

Constraints ensure that locations are positioned so that no vehicle has to travel more distance than the 

maximum range. The mathematical formulation follows [11] and [18].  
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min ∑ 𝑧𝑖

 𝑖∈𝑁

  (1) 

s.t.   

∑ 𝑧𝑖 ≥ 𝑦𝑞 ,
𝑖∈𝐾𝑖,𝑗

𝑞
 ∀𝑞 ∈ 𝑄, 𝑎𝑗,𝑘 ∈  𝐴𝑞 (2) 

∑ 𝑓𝑞𝑦𝑞  ≥ 𝑠 ∑ 𝑓𝑞
𝑞∈𝑄𝑞∈𝑄

  (3) 

𝑦𝑞 , 𝑧𝑖 ∈ {0, 1}, ∀𝑞 ∈ 𝑄, 𝑖 ∈ 𝑁 (4) 

 

Set and indexes  

𝐴𝑞 

 

 

Set of all directional arcs on a shortest path 𝑞, sorted from the origin to the 
destination  

𝐾𝑖,𝑗
𝑞

 Set of all potential nodes that can refuel the arc 𝑎𝑗,𝑘 in 𝐴𝑞 

𝑁 Set of all nodes in the modelled network  

𝑄 Set of all origin-destination pairs 

𝑖, 𝑗, 𝑘 Indices, indicating nodes 

𝑞 Index of origin-destination pairs 

𝑎𝑗,𝑘  Index of a directed arc from node 𝑗 to node 𝑘 

Parameters 

𝑓𝑞 

 

Vehicle flow at path 𝑞  

𝑠 Share of recharged vehicle flows, in our modelling always 1 

Decision variables  

𝑦𝑞 

 

=1 if the flow on path 𝑞 is recharged, 0 otherwise  

𝑧𝑖 =1 if a charging location is built at node 𝑖, 0 otherwise 

The objective in equation (1) minimizes the number of public fast charging locations 𝑧𝑖at all node 𝑖 in the 

network. As shown in equation (2), a path can be recharged (𝑦𝑞 = 1) if there is a charging infrastructure for 

each arc 𝑎𝑗,𝑘 of the path. For each arc 𝑎𝑗,𝑘 outside the initial range of the vehicle, a candidate set 𝐾𝑖,𝑗
𝑞

 is 

computed that contains all recharging possibilities to pass the arc 𝑎𝑗,𝑘. The path can be recharged if every 

candidate set contains at least one location 𝑧𝑖 that is realized. Finally, equation (3) ensures that a certain share 

𝑠 of all vehicle flows 𝑓𝑞 can be realized. In this paper, we assume that all flows have to be realized.  

For the capacity-constrained German charging network, only trips that take place at least partially in Germany 

are considered. For multi-country paths, the distance from the origin or the last charging location before the 

German border to the first charging location or the destination after the German border is considered. The 

mathematical formulation is shown in the following:  
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min ∑ 𝑧𝑖

 𝑖∈𝑁

  (5) 

s.t.   

∑ 𝑥𝑖𝑞𝑠
≥ 1,

𝑖∈𝐾𝑖,𝑗
𝑞𝑠

 ∀𝑞𝑠 ∈ 𝑄, 𝑎𝑗,𝑘 ∈  𝐴𝑞𝑠
 (6) 

∑ 𝑓𝑞𝑠
𝑥𝑖𝑞𝑠

 ≤ 𝑐𝑖𝑧𝑖
𝑞𝑠∈𝑄

, ∀𝑖 ∈ 𝑁 (7) 

∑ 𝑥𝑖𝑞𝑠
≤ 𝑙𝑞𝑠

,
𝑖∈𝑁

 ∀𝑞𝑠 ∈ 𝑄 (8) 

𝑥𝑞𝑠
, 𝑧𝑖 ∈ {0, 1}, ∀𝑞𝑠 ∈ 𝑄, 𝑖 ∈ 𝑁 (9) 

 

Set and indexes  

𝐴𝑞𝑠
 

 

 

Set of all directional arcs on a shortest path 𝑞𝑠 , sorted from the origin to the 
destination  

𝐾𝑖,𝑗
𝑞𝑠 Set of all potential nodes that can refuel the arc 𝑎𝑗,𝑘 in 𝐴𝑞𝑠

 

𝑁 Set of all nodes in the modelled network  

𝑄 Set of all origin-destination pairs 

𝑖, 𝑗, 𝑘 Indices, indicating nodes 

𝑞𝑠 Index of origin-destination pairs. Extended to identical origin-destination 
pairs for each subset. Flows are split, if the vehicle flow exceeds the capacity 
of a single parking space. 

𝑠 Index, indicating a subset of a path 𝑞 

𝑎𝑗,𝑘  Index of a directed arc from node 𝑗 to node 𝑘 

Parameters 

𝑓𝑞𝑠
 

 

Vehicle flow at path 𝑞𝑠  

𝑐𝑖  Capacity restriction in node 𝑖 

𝑙𝑞𝑠
 Number of maximum stops to drive path 𝑞𝑠  

Decision variables  

𝑥𝑖𝑞𝑠
 

 

=1 if the flow on path 𝑞𝑠 is recharged at node 𝑖, 0 otherwise  

𝑧𝑖 =1 if a charging station is built at node 𝑖, 0 otherwise 

Again, equation (5) minimizes the number of charging locations 𝑧𝑖. As indicated by [19] and [12], a capacity-

constrained infrastructure modeling needs to know the charging location of each vehicle. Therefore, 𝑥𝑖𝑞𝑠
 

indicates if a flow 𝑞𝑠 is recharged at node 𝑖. Again, equation (6) ensures that every arc 𝑎𝑗,𝑘 of a path is 

drivable. Equation (7) limits the number of charging events at a node 𝑖 to the capacity of the node. The 

capacity 𝑐𝑖 is calculated using the available parking lots to calculate the number of vehicles that can be served 

in the peak hour. For the actual calculation, the queuing theory approach described in [15] is used. Finally, 

equation (8) defines the maximum number of charging stops during one origin-destination-tour. The 
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maximum number of stops for a path 𝑞𝑠 is calculated according to equation (10). Since the capacity constraint 

in combination with the vehicle range might lead to additional charging stops, we allow for one additional 

stop. The additional stop may be necessary if the distance between two stops is significantly shorter than the 

vehicle range, for example because no charging facility can be provided at a suitable distance or it is fully 

occupied by other vehicles and can’t be expanded due to the capacity constraint. 

𝑙𝑞𝑠
=  ⌊

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑞𝑠

𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇
⌋ + 1 

∀(𝑞𝑠 ∈ 𝑄) ∩ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑞𝑠
> 𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇)  (10) 

𝑙𝑞𝑠
 Number of maximum stops to drive path 𝑞𝑠 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑞𝑠
 Length of path 𝑞𝑠  

𝑟𝑎𝑛𝑔𝑒𝐵𝐸𝑇 Vehicle range within one driving session of 4.5 h 

Again, the objective function minimises the number of charging locations. Compared to the FRLM presented 

above, the constraints additionally ensure that no more charging points are established at any charging 

location than there are parking lots available. We refer to this formulation as capacitated flow-refuelling 

location model (CFRLM).The capacity constraint significantly complicates the problem, since for each 

vehicle not the possible charging locations, but the actually used charging locations have to be determined. 

Therefore, we use 8 processors and 256 GB of memory to solve the problem. The implementation is done in 

Python 3.10, integrating CPLEX 12.6 via Pyomo.  

3 Results  

First, we present the results for the FRLM for Europe. Second, we present the results for the CFRLM for 

Germany.  

As shown in Figure 2, 339 charging locations in Europe allows for Europe-wide truck traffic. In order to keep 

the computation time reasonable, we accept a solver tolerance of 5%. Theoretically, the optimal solution 

could be 323 charging locations. Along roads with few junctions, for example in Norway, Sweden, or Finland, 

charging locations have the maximum possible distance of 300 km. If the road network is dense, for example 

in the centre of Europe, it is more efficient to place charging locations at highway junctions or intersections. 

One location may serve two roads, if built at a junction. However, the model does not know whether it is 

possible to build a charging infrastructure at those junctions.  

In the background, the relevant daily traffic volume (>300 km, >= 50 trucks/a) is plotted. It can be clearly 

seen that the traffic volume has no influence on the density of the charging infrastructure. For example, there 

are heavily trafficked roads in Poland with a similar distance between charging stations as rarely travelled 

roads in Norway or Sweden.  

The result from the FRLM outside Germany serves as minimum charging infrastructure for cross-border 

traffic in the CFRLM. For example, there is a charging location in the South of Denmark. Therefore, neither 

the FRLM nor the CFRLM position a charging location nearby the German-Danish border in Germany. 

However, the 42 charging locations of the FRLM in Germany are not part of the CFRLM charging network.  
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Figure 2: European charging locations, according to the FRLM 
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Figure 4 shows the results of the CFRLM in Germany. For comparison, the FRLM solution is plotted as blue 

dots in the same figure. In total, the charging network consists of 124 charging locations. Since the 

computational effort is quite high, the solver tolerance is set to 15%. Therefore, the best-case solution could 

also be 106 charging locations. However, this is still 2.5 times more than the solution in the FRLM.  

Even with the introduction of the capacity restriction, large locations continue to be part of the solution. 

While the smallest location contains two charging points, the largest location consists of 334 charging points. 

Figure 3 shows how many charging locations with a certain size are build. However, we clustered the parking 

locations from the Autobahn GmbH to the next point in the road network, as long as the distance is less than 

2 km. This means that some charging locations contain multiple parking areas. For example, the largest 

location with 334 charging points includes four different parking areas. In total, the CFRLM calculates 12,323 

charging points. The median charging locations contains 83 charging points. On average, a charging station 

contains 99 charging points.  

 

 

Figure 3: Distribution of charging points to charging locations   

 

In contrast to the FRLM, the CFRLM positions large stations with low distance at highly trafficked routes. 

For example, large charging stations are built along the A2 highway from the Netherlands - via Dortmund, 

Hanover, and Berlin - to Poland. This is one of the most trafficked long-haul corridors from the ports in the 

Netherlands to Eastern Europe. Another example is the transit route from the Netherlands - via Cologne and 

Frankfurt - to Austria. On this route, there are also large charging locations at short distances. In comparison, 

less frequented routes, for example from Lübeck via Rostock to Poland, are equipped with few and 

comparatively small charging locations. In such sections, the CFRLM network density is quite similar to the 

FRLM.  
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Figure 4: Distribution of charging locations in Germany according to the FRLM (green) and the CFRLM (blue) 
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4 Discussion 

This paper applies a capacity-constrained FRLM (CFRLM) to a dataset with more than 200,000 traffic flows 

and includes real-world parking capacities. The capacity constraint more than doubles the required number 

of charging locations in Germany, compared to an uncapacitated FRLM. However, the results are still 

dependant on the input parameters, the assumptions, and the methodological approach. Regarding the input 

parameters, the modelling relies in synthetic origin-destination paths. Therefore, multi-stop-tours are taken 

into account as multiple single paths. Depending on the routing, the charging behaviour may differ. For 

example, additional charging events might be necessary, if the time between two trips is too short to recharge 

at the depot. Alternatively, public charging events can be skipped, if the combination of paths allows shorter 

distances between depots. The range of the vehicles may also change in the future. Regarding the 

assumptions, the potential usage of all parking lots as charging points is probably too optimistic. For example, 

the grid connection may also limit the number of vehicles that can be recharged at one location. This will 

likely result in additional locations. Regarding the methodology itself, the introduction of the capacity 

constraint comes with high computational demand. However, the results show that this additional effort, 

compared to an FRLM, allows significant knowledge gains. It should be noted, that optimality in the sense 

of a minimum number of locations is not necessarily optimal for the logistics provider. For example, a tighter 

network can offer additional resilience, such as in the event of traffic jams that lead to unplanned earlier 

stops.  

In summary, the CFRLM shows a good starting point for local planners to identify highly relevant charging 

locations and to draw a basic picture of the future infrastructure. However, due to the given uncertainties, the 

evaluation of specific locations should include further information from additional sources.  
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