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Executive Summary 

Wireless electric vehicle energy network (WEVEN) uses electric vehicles (EVs) to regulate energy 

distribution over a large geographical region. EVs can charge and discharge wirelessly at electrified traffic 

lanes while moving, hence achieving energy transfer. From the EV owner’s perspective, efficiently 

determining the optimal route and energy strategy in the profit-oriented market is an important issue. This 

paper proposes a reinforcement learning-based approach to solve the above combinatorial optimization 

problem in the WEVEN. Both the traveling time and energy trading benefits are optimized, while the state-

of-charge constraints for EVs are well guaranteed. Simulation results for two cases, including a real traffic 

system, are given to verify the feasibility of the proposed approach. 
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1 Introduction 

Transportation electrification is emerging as an important vision in many countries with rising concerns about 

global warming and fossil energy scarcity [1, 2]. Billions of dollars have recently been committed to funding 

the development of electric vehicles (EVs) and their auxiliary devices. The advances in EV wireless 

charging/discharging [3-5] and vehicular communication technologies [6, 7] enable the formation of the 

Energy Internet built upon the traffic network [8, 9], which is defined as the wireless electric vehicle energy 

network (WEVEN) [10]. In a WEVEN, EVs travel from the start point to the destination along the routes 

selected. The traffic lanes are equipped with bidirectional wireless power transfer systems and energy storage 

devices. According to the electricity price and state of charge (SoC) requirements, EVs can adopt energy 

management strategies while moving, namely charging, discharging, or idle [11], and thus transfer energy 

across the network. 

Most EV routing or charging problems are formulated as mixed integer programming (MIP) models, which 

are generally nondeterministic polynomial time (NP)-hard and computationally difficult to solve to optimality. 

The routing and charging problem of an EV fleet was solved as the pre-trip decision-making in [12]. An 

efficient distributed algorithm is proposed in [13] to solve the joint optimization problem in EV networks. A 
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method based on constraint logic programming and optimization using a graph-based shortest path algorithm 

was proposed in [14] to route EVs around mobile charging stations. [15] designed a EV charging system with 

the bus network and proposed a Route Scheduling Algorithm based on the approximation solution of the 

Restricted Shortest Path problem. A combined charging–driving navigation model for EVs traveling in the 

electrified highway network was proposed in [16], which was then solved by dynamic programming and the 

chronological search algorithm. [17] established a multi-objective optimization model to determine the route 

and charging strategies, and reduced the model complexity with the Big-M approach. Recently, some 

machine learning-based strategies, especially reinforcement learning (RL) algorithms, have been applied in 

this research area to enable fast decision-making [18]. Inspired by [18], [19] proposed an end-to-end deep 

RL framework to solve the EV routing problem with time windows (EVRPTW). A deep RL-based neural 

combinatorial optimization strategy was presented in [20] to solve the online vehicle problem transformed to 

a vehicle tour generation problem. [21] proposed a reinforcement model to solve the dynamic energy 

scheduling and routing of multiple EVs. A deep RL-based EV charging navigation method was applied in 

[22], aiming at minimizing the total travel time and the charging cost. As an improvement on [22], [23] used 

an online shortest-path-based approach to extract the low-dimensional features, which can be used as input 

to the deep RL algorithm. 

This paper presents an action-value-based RL approach to solve the joint route selection and energy 

scheduling for EVs in the WEVEN. Unlike other RL algorithms, it requires no complete knowledge of the 

system. Not only the structure and functions of the WEVEN are well considered, but also the SoC 

requirements for EVs are always satisfied during the process. 

The rest of the paper is organized as follows. Section 2 gives an overview of the WEVEN, including its 

definition, practicality, benefits and related technologies. Section 3 shows the problem statement and 

mathematical model formulated as mixed integer programming (MIP) optimization problem. Section 4 

presents the reformulation of the MIP model and the proposed RL approach to solve it. The experiment results 

are illustrated in Section 5, and the conclusion is drawn in Section 6. 
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Figure 1: Location and configuration of a dynamic WER in WEVEN 

2 Wireless Electric Vehicle Energy Network 

WEVEN is built upon the road network and uses EVs to transport energy between multiple nodes along a 

selected path. A traffic lane can be electrified to become a dynamic wireless energy router (WER) [24], which 

is a bidirectional WPT system made up of a wireless power transceiver, a bidirectional converter and an 

energy storage system, as illustrated in Fig. 1. The energy storage system prefers to be a combination of 

battery and ultracapacitor [25], which can have long cycle life as well as high specific power. EVs can 

(dis)charge at dynamic WERs without stopping motion, thus saving more time for EVs to finish power 

exchange. The advantages of EV owners participating in wireless energy trading in the WEVEN include 
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earning discharging income, reducing costs by optimizing charging [26], compressing automotive battery 

size [27], and alleviating range anxiety. WEVEN is also one of the puzzles of the Energy Internet, which can 

assist the power grid in peak shaving and power transmission. Moreover, WERs can store intermittent 

renewable generation, and such energy can be transported from remote areas to urban centers [28]. 

Information and communication technology (ICT) plays an important role in real-time energy trading in the 

WEVEN [29]. The fifth-generation communication technology can facilitate participating EVs to initiate 

their energy requests, communicate with the WERs for reservations and collect traffic information [30, 31]. 

Regional independent system operators may regulate the electricity price according to energy and traffic 

conditions and intervene in the profit-oriented activities of EVs. Combined with autonomous driving 

technology, participating EVs can quickly adjust the routes and (dis)charging strategies based on information 

such as prices and traffic conditions [32, 33], thereby improving energy conversion efficiency. Moreover, 

blockchain technology can record and balance the delivery and settlement processes, which can enhance 

security and privacy, improve transaction efficiency and enable real-time data sharing [31, 34-36]. 

3 Mathematical Optimization Model 

3.1 Problem Description 

A directed graph ( ),=  can be used to describe the WEVEN, where  1,2,..., 1= −  is a set 

of  road junctions and  is a set of  directed arcs representing electrified roadways functioning 

as WERs. All EVs participating in wireless energy trading are equipped with hybrid energy storage of battery-

ultracapacitor; therefore, they have very high specific power and can achieve fast wireless energy transfer. 

Suppose a participating EV will travel from node 0 to node 1− , aiming to spend less travel time and 

get more trading profits. Due to the different renewable power generation and load conditions in the region 

where each WER is located, the electricity price in each region also changes accordingly. The EV can choose 

one of the available routes and determine the energy management strategy, namely charging, discharging, or 

idle, as it traverses each WER. During the whole driving process, the EV must ensure that its energy storage 

state of charge (SoC) is within an acceptable range, that is, overcharging and overdischarging are not allowed. 

3.2 Mixed Integer Programming Model 

According to the problem described above, a MIP model based on   can be established. The binary 

decision variables are introduced as follows: 

1 if the EV travels through arc ( , ),

0 otherwise,
ij

i j
x


= 


 

1 if the EV charges at arc ( , ),

0 otherwise,
ij

i j
xc
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1 if the EV discharges at arc ( , ),

0 otherwise.
ij

i j
xd
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Then the optimization model can be formulated as: 
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 min max ,jE E E j     (7) 

 0, ( , )ij ijxC xD i j+ =    (8) 

The objective function (1) minimizes both the total travel time defined in Eq. (2) and the total cost defined 

in (3), where   is the economic value of Time  and   is the weight to adjust the two sub-objectives. In 

(2), ijl  is the length of arc ( ),i j  and ijv  is the speed of EV traveling through arc ( ),i j . In Eq. (3), 
c

ije  

and 
c

ij  are charging capacity and corresponding electricity price, 
d

ije  and 
d

ij  are discharging capacity 

and corresponding price. Constraints (4)-(5) ensure the route continuity and that the EV can only visit each 

node once. jE  is the carried energy when the EV arrives at node j, and the conservation of energy is defined 

in Eq. (6), where 
le  is the power consumption per unit length. The upper and lower bounds for jE  are 

described in Eq. (7). Eq. (8) imposes constraints on the energy management strategy of the EV, meaning it 

cannot be charged and discharged at the same time when passing through a certain dynamic WER. 

In order to solve the above MIP model, it is necessary to know the overall structure and all system parameters. 

Furthermore, it is a typical NP-hard problem with bilinear terms in both objective functions and constraints. 

Therefore, if the system scale is large, it can be very time-consuming to generate solutions. 

4 Proposed Reinforcement Learning-Based Approach 

4.1 EV Agent 

The EV agent starts from node 0 and travels to node 1−  along the WEVEN represented by a directed 

graph. It can reduce costs and even obtain benefits by selecting proper routes and energy strategies. The 

system state 
ks  at step k is a tuple of two variables ( ),k k ks p SoC= , where 

kp  is the vehicle location 

represented by the node number, and 
kSoC   is the SoC of EV battery. The action space ( ),k mk eka a a=  

consists of two parts: one is mobility action 
mka , namely moving to one of the adjacent nodes along the 

directed arcs, and the other is energy management action  ,ek k ka xC xD=  , namely charging ( 1kxC =  , 

0kxD = ), discharging ( 0kxC = , 1kxD = ), or idle ( 0kxC = , 0kxD = ). 

4.2 Environment Agent 

Given the system state ( ),k k ks p SoC=  and the action ( ),k mk eka a a=  taken at step k, the next system state 

( )1 1 1,k k ks p SoC+ + +=  can then be determined according to the following state transition rules: 

 
1k mkp a+ =  (9) 

 ( )1 / , for   and c d

k k ij l k ij k ij bat k mkSoC SoC l e xC e xD e E i p j a+ = + −  +  −  = =  (10) 

where the definitions of parameters 
le , 

c

ije  and 
d

ije  are the same as in the MIP model, and 
batE  is the 

energy storage capacity of the EV. 

The reward function can be defined as: 

 ( ) ( ) ( ), 1 , for   and 
ij d d c c

k k k ij ij k ij ij k mk

ij

l
R s a xD e xC e i p j a

v
    = − −   +   −   = =  (11) 

The constraints for mobility actions in Eqs. (4)-(5) and energy management actions in Eq. (8) are involved 

in the definition of action space. The constraints on the energy carried energy by the EV are equivalent to 

those on the SoC. There are two methods proposed to limit the SoC for the EV agent to a certain range. One 

is to subtract a large value from the reward when the SoC exceeds the limit in a certain step; the other is to 
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define the available action space based on the SoC value, which means only charging is permitted when the 

SoC value falls below the lower limit, and vice versa. 

4.3 Algorithm 

The action-value-based RL algorithm is adopted to find the best course of action for the above problem. The 

first-visit Monte Carlo (MC) method is used to evaluate the action-value function ( ),Q s a . MC methods do 

not assume complete knowledge of the environment and require only experience sample sequences of states, 

actions, and rewards from actual or simulated interaction with an environment. Therefore, the environment 

agent defined in Section 4.2 needs only generate sample transitions. The pseudocode of the first MC method 

is shown in Algorithm 1. 

 

Algorithm 1 First-visit MC method 

Initialize: 

 an arbitrary policy   

( ) ( ),  empty dictionary, for all ,   Q s a s S a A s    

( ) ( ),  empty dictionary, for all ,   Returns s a s S a A s    

 

 1: while True do: 

 2:    generate an episode following policy  : 
1 1 1,  ,  ,  ,  ,  ,  K K Ks a r s a r  

 3:    0G  

 4:    for ,  1,  ,  1k K K= −  do 

 5:       
kG G r +  

 6:       if  1 1, ,k ks s s −  then 

 7:          next k  

 8:       else 

 9:          append G  to ( ),k kReturns s a  

10:          ( ) ( )( ), ,k k k kQ s a average Returns s a  

11:          ( )* arg max  ,k
a

A Q s a  

12:          for all ( )ka A s  do 

13:             greedy policy: − ( )
( )

( )

*

*

1 /   if 
|

/        if 

k

k

k

A s a A
a s

A s a A

 




 − + =
 



 

14:          end for 

14:       end if 

15:    end for 

16: end while 

In order to achieve enough exploration for data collection, epsilon greedy is introduced to select the action 

from a given state. For any policy  , any  -greedy policy '  with respect to value function q  is 

guaranteed to be better than or equal to  , which can be proved by the policy improvement theorem in [37]. 

The equality can hold only when both '  and   are optimal among the policies. 
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5 Case Studies 

5.1 Case 1 

As shown in Fig. 2, a simple WEVEN with three traffic nodes and seven directed arcs is employed in Case 

1. All the arcs are electrified as dynamic WERs enabling wireless energy trading. The parameters are shown 

in both Fig. 2 and Table 1. In this case, a per-unit (p.u.) approach is employed to quantify a number of different 

variables, and the (dis)charging capacities are assumed the same on each arc for convenience. 
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Figure 2: Dynamic WEVEN for Case 1 

 

Table 1: Parameter Values for Case 1 

Description Parameter Value Unit 

Charge consumed per kilometer le  0.15 p.u. 

Charging capacity on each arc 
c

ije  10 p.u. 

Discharging capacity on each arc 
d

ije  10 p.u. 

Initial battery charge 0E  25 p.u. 

Maximum battery charge maxE  50 p.u. 

Minimum battery charge minE  10 p.u. 

Value of time   5 $/p.u. 
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Figure 3: Optimal routes and energy strategies for Case 2. (a) 0.2 =  and 0.5. (b) 0.8 = . 
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In order to investigate the impact of the weighting in the objective function on the final result, three cases 

where 0.2 = , 0.5 and 0.8 are studied. The larger the  , the more the vehicle tends to earn more revenue, 

and the smaller the  , the more it tends to reduce travel time. The optimal routes and energy strategies are 

shown in Fig. 3. The total reward of the proposed RL method is compared with the objective value of the 

MIP model in Table 2, from which it can be seen that they are just opposite numbers, thus verifying the 

optimality of the proposed RL method. 

 

Table 2: Optimal value comparison between RL and MIP methods 

  Total reward of RL Objective value of MIP 

0.2 -8.29 8.29 

0.5 -6.98 6.98 

0.8 -4.91 4.91 

5.2 Case 2 

Case 2 tests the proposed RL model using a real traffic system. The real road map of Santa Clara, California 

provided by Google is used in Fig. 4. Suppose there is one region with abundant renewable energy and low 

electricity prices and another region with heavy electric loads and high electricity prices in this WEVEN. An 

EV participating in wireless energy trading will travel from Node 0 to Node 19. The parameters of the EV 

are summarized in Table 3. The detailed travel time and (dis)charging prices on each road are given at Santa 

Clara.xlsx, in which three scenarios with different distributions of the two regions are provided. Note that the 

(dis)charging capacities 
c

ije   and 
d

ije   are determined by the product of (dis)charging power P   and 

traveling time ijt  on each arc. 
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Figure 4: The real road map of Santa Clara, California 

 

Table 3: Parameter Values for Case 1 

Description Parameter Value Unit 

Charge consumed per mile le  0.25 kWh/mile 

Wireless (dis)charging power P  30 kW 

Initial battery charge 0SoC  30% kWh 

Maximum energy storage SoC maxSoC  100% kWh 

https://connecthkuhk-my.sharepoint.com/:x:/g/personal/crsi2021_connect_hku_hk/EWGXrITiwoNHvHg3hdbFSpIBotOo9voQo4BxrfKrimEjAg?e=STqjMP
https://connecthkuhk-my.sharepoint.com/:x:/g/personal/crsi2021_connect_hku_hk/EWGXrITiwoNHvHg3hdbFSpIBotOo9voQo4BxrfKrimEjAg?e=STqjMP
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Minimum energy storage SoC minSoC  20% kWh 

Value of time   0.2 $/min 

Fig. 5 shows the optimal routes and energy strategies for different electricity price region distributions, in 

which “D”, “I”, and “C” labeled on the selected routes represent discharging, idle, and charging, respectively. 

It can be seen that the EV agent tends to charge in Region 1 and discharge in Region 2. The EV agent has a 

greater possibility of (dis)charging in the desired regions when the start and end nodes are located nearby or 

even included in the two regions. Table 1 is a comparison of the optimization results of the three scenarios. 

When 0.5 =  , the EV agent can get the maximum benefits in Scenario 1 and 3; when 0.8 =  , the 

maximum benefits are also obtained in Scenario 3. The maximum electricity transferred from Region 1 to 

Region 2 can be achieved in Scenario 3 as well. 
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Figure 5: Optimal routes and energy strategies for Case 2 in three scenarios (Region 1 has abundant renewable energy 

and low electricity prices, and Region 2 has heavy electric loads and high electricity prices). (a) Scenario 1. (b) 

Scenario 2. (3) Scenario 3. 

 

Table 1: Comparisons of the optimization results for Case 2 

Scenario   Total reward of RL  

($) 

Charge capacity in 

Region 1 (kWh) 

Discharge capacity 

in Region 2 (kWh) 

1 0.5 -1.19 2 1 

0.8 0.02 2 1 

2 0.5 -1.39 2 0 

0.8 -0.18 2 1 

3 0.5 -1.20 1 2 

0.8 0.30 5.5 4.5 

Although the action-value-based RL algorithm presented in this paper does not need the complete 

environment agent model, it does require billions of experience data for MC process to get the near-optimal 

strategy. In addition, since the real traffic system has quite a large action and state space to explore, the 

training can be very time-consuming. Other potential RL algorithms, such as deep Q-learning, can be 

investigated for better performance. 

6 Conclusion 

WEVEN is a promising application of the Energy Internet, and the mobility of EVs can help transport energy 

across a wide geographical area. This paper presents an action-value-based RL algorithm to find the optimal 

vehicle routing and energy scheduling strategy for EV owners in the profit-oriented WEVEN. Such an 

approach just requires sample sequences with prior experience rather than comprehensive knowledge of the 

environment. The SoC constraints for the EV are also well-guaranteed during the trip. Two cases, including 

a real traffic system, are examined to show that the proposed method can efficiently solve large-scale 

problems after offline training. Scenarios with different weights of the two objectives and price region 

distributions are simulated and analyzed. Future research directions can be uncertainty in the WEVEN, the 

coordination of multiple participating EVs, and the interaction between the WEVEN and the power grid. 
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