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Executive Summary 

In response to climate change and decarbonization, electrification especially in transportation sector has 

grown rapidly. While the swift adoption of Electric Vehicles (EVs) contributed to Net zero emission but high 

charging demand introduced undesirable consequences to the power grid which requires novel solutions.   

In recent years, several researchers have approached the power grid emerging challenges caused by EV 

charging as an optimization problem with specific constraints such as efficiency, economical aspects for both 

EV owners and charging station operators. In this research, Deep Multi-task learning is employed with an 

end to end training of a model which is supervised by a loss function. The proposed framework optimizes 

the performance of smart charging. The proposed model is compared with the state of the art adaptive 

charging algorithms as well as uncontrolled scenario for benchmarking. The result proves that while the 

proposed technique matches with the performance of single task method in terms of total energy delivery, it 

outperforms counter techniques in charging cost comparison. 
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1 Introduction 

The global sustainability shift which was driven by the environmental challenges such as climate change and 

global warming led to some initiavtes like ectrification. Considering the contribution of transportation sector 

to the undesirable emissions [1] , the shift from Internal Combustion Engine vehicles to Electric Vehicles 

was inevitable. Supported by government investments globally, the trend of EV deployment is forcasted to 

be fast growing globally [2] as well as regionaly and in countries [3, 4]. 

The reliabaility and stability of power grid and micro grids are threatened with unprecedented high peak 

loads of EV charging demand [5]. Therefore, a careful balance between system reliability and desired user 

experience via EV availability should be managed.   

1.1 Background and Motivation 

In order to address the overwhelming charging demand to EV charging infrastructure, controlled charging 

method were employed. In contrast with uncontrolled charging systems which are suffering from operational 

challenges such as over capacity demand during peak load and inefficient resource utilization, controlled 
methods have proved satisfactory outcome. Moreover, some studies have shown that managed charging 
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methods contributed to sustainability and greenhouse gas emission while reducing the power grid operation 

costs [6, 7].  

The control methods which are used for EV charging process management can be categorized in three groups 

of rule based and model predictive controls (RBC) and (MPC) respectively and deep learning based control 

methods [8]. 

1.2 Related Works 

Due to the disadvantages associated with RBC and MPC methods such as challenges in scalability and 

coputentation complexity and model sensitivity, deep learning based algorithms gained popularity in recent 

years. Besides the shotcomings of alternative approaches, advancements in Deep Neural Network (DNN) 

architectures and availability of real world equiavalnt datasets in reasonable size such as ACN-sim [9] 

facilitated the emerging of deep learning based algorithms. 

There are some studies which studied the impact of factors such as SOC[10] or carbon emission[11] or 

charging station revenue[12] in adaptive charging while optimizing the decision problem. Majority of these 

methods are implemented using Reinforcement Learning (RL) such as introduced adaptive charging methods 

in [12-14]. 

2 Method 

Mutli-task learning has shown promising results in solving problems in different fields [15]. For example in 

autonomous driving systems [16] and medical image processing [17]. 

In this study, a deep multi-task framework is proposed to overcome challenges in shallow constraint based 

optimization for EV charging. The multi-task learning architecture is designed to extract deep features 

supporting local and global optimization to produce the best outcome. The loss function is designed to guide 

the learning of auxulary deep features in benefit of global optimization.    

The proposed model is increasing the efficiency of charging while considering energy cost and peak load 

effect and is named EDC-DMT-Net standing for Energy Delivered and Cost Deep Multi Task Network. This 

name will be used for reference to this proposed model. 

2.1 Charging Model 

In this study, the scope of charging model is limited to charging stations, drivers, electrical vehicles and 

charging sessions with their relevant constraints which are listed in this section. The EV charging is modelled 

with discrete time with a fix period. In our model each charging session of s which initiates by EV occurs in 

time of t contains related information of time of arrival to charging station and planned departure time from 

charging station as well as current state of charge of EV and desired state of charge in time of departure. 

Moreover, the EV charging constraint is provided in terms of peak charging rate of EV. 

Our charging model constraints and assumptions are stated in this section. 

a) Time is discrete with fixed period. 𝑡1belongs to the set of time points of {1,2,3, …., T} where the 

distance between each to adjacent time points in this set is fixed and equal. 

𝑡1  ∈ {1,2,3, … , 𝑇} (1) 

b) Each charging station has a peak limit of P which defines the maximum possible delivery of energy 

for all charging sessions of that particular charging session at any point of time. 

∑ 𝑥𝑖(𝑡)  ≤  𝑃(𝑡)

0≤ 𝑖 ≤ 𝑣 

 (2) 

Each EV has a peak limit of CP which is enforced as a hard limit. Charging power in all charging 

sessions are limited to lower boudry of zero and upper boundry of EV peak limit hence the 
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charging power can not become negative and can not exceed the maximum acceptable rate that 

EV accepts at any point of time. 

0 ≤  𝑥𝑖(𝑡)  ≤  𝐶𝑃(𝑡) (3) 

c) The state of charge of EV can be calculated based of state of charge of EV in arrival time, previous 

state of charge in time and charging power of active charging sessions. 

𝑠𝑖(𝑡) = {
𝑠𝑖,𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ,                                     𝑡 = 0

𝑠𝑖(𝑡 − 1)  +  𝛼𝑥𝑖(𝑡) ,               𝑡 ≥ 1
 

(4) 

Value of 𝛼 is considered as constant and known for each EV before operation. 𝛼 can be calculated 

based on values of discretization and charging efficiency of EV battery.  

d) Charging session are temporal and no charging power will be delivered for the EV which has not 

arrived to charging station as well as no charging power for the EV that departed from charging 

station. 

𝑥𝑖(𝑡) = {
0,                                  𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙  > 𝑡  ∪   𝑡 >  𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 

𝑥𝑖(𝑡) ,                          𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ≤ 𝑡  ≤  𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
 

(5) 

2.2 EDC-DMT-Net Objective 

While the proposed model does not suffer from the drawbacks of MPC smart charging algorithms, the 

proposed method is addressing the challenges of smart EV charging techniques [18]. 

By combining the benefits of indirectly controlled techniques with smart charging technique which is making 

the monetary benefits clear to EV owners and encouraging them to participate in smart charging EDC-DMT-

Net addresses the drwabacks identified in EV smart charging. 

EDC-DMT-Net produces two ouputs of charging rate and charging total cost. The model is trained to 

maximize the energy delivered during the charging sessions while the cost of charging is minimized based 

on time of use energy price and demand cost. 

𝐸 = max
𝑥

∑

𝑇

𝑡=1

∑ 𝑥𝑖(𝑡)

𝑣

𝑖=1

−  𝛽 ∑|𝑠𝑖(𝑇) − 𝑠𝑖,𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒|

𝑣

𝑖=1

  

                        s.t. (1), (2), (3), (4), (5) 

(6) 

This function aims to maximize the delivered energy to connected EVs during charging sessions by 

complying to all assumptions and constrained stated in charging model. This function motivates the optimal 

sharing of available charging power between connected EVs in order to maximize the highest delivery met 

demand of charging energy requests while not violating the peak limits of charging station (P) and EV peak 

limit (CP).  

𝐶 =  min
𝑐

∑

𝑇

𝑡=1

∑ 𝑐𝑖(𝑡) 

𝑣

𝑖=1

𝑥𝑖(𝑡) 

(7) 

The objective of this function is to minimize the total cost of charging for all EV charging demands in stated 

charging model. Total cost of charging for each EV of i at time of t is denoted as 𝑐𝑖(𝑡) which considers both 

charging cost and demand cost. The price calculation introduced in [19] is used for EV charging total cost 

calculations. The simplified formula of composite price which demonstrate the contributing factors in the 

payable price of EV charging is shown in (8) .  
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𝑐𝑖(𝑡)  ∶= 𝑝𝑡 + ∑ 𝐴𝑙𝑖𝛽𝑙𝑡 + 𝛾𝑖𝑡 +  𝛿𝑡   

𝑙

 

(8) 

 

𝑐𝑖(𝑡) is composite price at time of t which incorporated the 𝑝𝑡 as energy price at time of t and included the 

network congestion with ∑ 𝐴𝑙𝑖𝛽𝑙𝑡  𝑙 and charger congestion is denoted with 𝛾𝑖𝑡 while 𝛿𝑡 represents the 

demand charge. 

2.3 Multi-Task Learning 

As stated in EDC-DMT-Net objective, in order to output total charging cost besides the optimal charging 

rates for connected EVs in charging station, the multi task learning approach is chosen. The model will output 

the estimated total charging cost and by modified lost function, the model is encouraged to maximize the 

energy delivered during the charging sessions and maximize the total proportion of energy received by EVs 

while minimizing the payments needed from each charged EV owner. 

𝐿𝑑 = (𝐸𝑖 − 𝐸𝑖
𝑝𝑟𝑒𝑑

)2 (9) 

𝐸𝑖 denotes the energy delivered to EV of I and 𝐿𝑑 aims to reduce the distance of 𝐸𝑖
𝑝𝑟𝑒𝑑

 to maximum possible 

energy delivered to connected EV. 

𝐿𝑐 =  (𝐶𝑖 − 𝐶𝑖
𝑝𝑟𝑒𝑑

)2 (10) 

𝐿𝑐 represents the cost Loss which is calculated to guide model train aiming charging cost reduction by 

reducing the network and charger congestion. The ideal minimum total cost aims to become closer to EV 

charging cost. 

𝐿 =  𝜆1𝐿𝑑 + 𝜆2𝐿𝑐 (11) 

Where 𝜆1 and 𝜆2 are hyper-parameters and L is combined loss function which supervises the training for 

multi task learning model with combination of 𝐿𝑑 as loss of delivery and loss of charging cost that is denoted 

with 𝐿𝑐.  

3 Experiment 

For evaluation purpose, the simulation approach with utilizing the large EV charging dataset which is called 

CAN-Data [20] is used. ACN-Data has EV charging session data collected from Adaptive Charging Network 

(ACNs)v which includes two sites of Caltech and JPL. Multiple charging stations are operating and have 

delivered energy to EVs from 2016. The simulation used the data of Caltech site for the duration of one 

month from first March 2019 until first April 2019 and the discereet period of each simulation was chosen to 

5 minutes. The Southern California Edison time of use tariff was used for pricing scheme and total cost of 

charging calculation. The energy delivered by EDC-DMT-Net is compared to delivered energy via single 

task technique and MPC technique which is optimized for earliest deadline first. As illustrated in Figure 1, 

EDC-DMT-Net outperforms EDF in total energy delivered comparison. However, EDC-DMT-Net energy 

delivery is on par with single task method. Moreover, from the figure it can be seen that when the capacity is 

high enough to meet the demand, EDF can reach to energy delivery of single task and EDC-DMT-Net.  
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Figure 1: Total energy delivered comparison 

The comparison of total cost of charging of different techniques are illustrated in Figure 2. As shown in this 

diagram the gap becomes wider as the available capacity grows. 

 

Figure 2: Total delivered energy cost comparison 

The total cost of charging is a bigger differentiator factor between EDC-DMT-Net and other techniques as 

shown in Figure 2. The difference is shown clearly, and the gap becomes bigger when the higher demand is 

received, and higher capacity is available. Comparing the two diagrams, where different techniques get closer 

in total energy delivery, the difference in cost efficiency becomes more obvious. EDC-DMT-Net aims to 

make the total cost of charging closer to energy cost and minimize the demand cost. 

4 Conclusion 

The rapid growth of EV adoption led to increased attention to EV charging optimization and has proved the 

promising advantage of smart charging. However, smart charging lacks participation of EV owners and 
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demonstrating its benefits to involved stakeholders. In this work, multi task learning approach is proposed, 

and EDC-DMT-Net was introduced to not only improve the EV charging efficiency but minimize the total 

cost of EV charging at the same time. EDC-DMT-Net produced the estimated charging cost as extra output 

that increases transparency of cost to EV owner and can lead to higher participation of them and incorporate 

the advantage of indirectly controlled techniques with smart charging. The simulation results prove 

outperforming performance of EDC-DMT-Net compared to single task optimized method in terms of total 

energy cost while maintaining the EV charging efficiency.  
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