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Executive summary 

Most existing EV policies are focused on the deployment of public charging infrastructure. However, around 

90% of EV chargers installed by 2040 will be in private settings. To evaluate the potential added value of 

deploying private smart EV charging technology in buildings, the authors conducted a study which 

demonstrates that coupling EV smart charging with flexible energy sources and loads in buildings offers a 

decentralized approach to energy systems that is more efficient and affordable for EV drivers than a 

centralized approach, generating up to 70% in savings for consumers. 
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1 Introduction  

Decarbonizing road transportation with EVs is deeply transforming the mobility industry. This trend will 

rapidly accelerate in the decades to come. But for this major shift to play out with actual benefits to society, 

one of the major challenges is EV charging infrastructure.  

The lack of ubiquitous charging infrastructure could turn into a key bottleneck to a rapid transition to EVs 

and is increasingly becoming a key concern globally. The cost of charging is also under intense scrutiny 

across the entire value chain, from consumers to system operations, and a key question is whether these costs 

can be optimized for rapid adoption. 

At the same time, with 300 to 500 million connectors to be expected by 2040 [1], EV charging infrastructure 

is clearly becoming one of the essential building blocks of tomorrow’s smart and decentralized energy 

system. Tapping into the potential services provided by these chargers, smart charging will play a critical role 

in removing bottlenecks and accelerating adoption. 

Yet, extensive analysis of the potential added value of smart charging remains scarce. Most existing policies 

have so far focused on public charging infrastructure, even though about 90% of the chargers are expected 

to be installed in households and commercial buildings. In this report, we provide a unique cost 

competitiveness analysis of different EV charging approaches in different building settings. 

We demonstrate that both consumers and system operators can benefit from smart charging at the building 

level. We dive deeply into a detailed cost-benefit analysis of local charging optimization in households, multi-

dwellings, and commercial buildings.   
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2 Why smart charging?  

Despite these overwhelming advantages, there is still uncertainty as to how EV mobility will develop. This 

is due to the availability of a resilient and ubiquitous charging infrastructure. Beyond immediate rollout 

hurdles, the key concern is the potential toll from EV charging on the power infrastructure and the 

corresponding investments required to upgrade it.  

Dealing with such issues in a traditional way will require massive infrastructure investments and come at the 

expense of consumers. The alternative (and complementary solution) is smart charging.  

2.1 Smart charging – customer and grid benefits 

While smart charging can benefit multiple stakeholders, we focus our approach on the end user (Figure 1), 

broadly defined as the category which incurs costs (charging Capex and charging bill), and thus has the most 

direct interest in opting for the cheapest charging solution. In residential dwellings, the end-user is usually 

the house owner. In other cases, the end-user may be the building owner, the tenant, or a mobility service 

provider.  

Then, the system operator can also leverage EVs for grid side optimization, which focuses on the response 

of the EV to a real-time signal from the grid or electricity market (explicit flexibility). The primary 

beneficiaries of this optimization are the grid and system operators, even though the end-user is ultimately 

compensated for the service. 

  

Figure 1: Sources of customer and grid benefits from smart charging under study  

 

The core focus of this paper is to clarify benefits of smart charging at end user level, presenting smart charging 

methodology and its benefits in different contexts. 

2.2 Smart charging framework 

While public charging relies on charging optimization that can be done directly with the grid (V-to-G) in 

buildings, optimization is done with the building loads (V-to-B) or with both in sequence (V-to-B-to-G) 

(Figure 2). This paper focuses on V-to-B applications, covering residential, commercial, and industrial 

buildings.  
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Figure 2: Smart charging framework description 

2.3 EV control charging strategies for V-to-B 

Residential, commercial, and industrial buildings (V-to-B) may have one of the following EV charging 

strategies (Figure 3):  

• Uncontrolled charging: The electric vehicles are charged at maximum power rating, which can lead to 

overload at peak consumption, especially in office or residential buildings, where electric vehicles’ 

charging demand are usually at the same time slot. The electricity price and the use of local energy 

sources are not optimized. This strategy does not require any control system but presents the highest 

CAPEX (electrical infrastructure) and Opex costs.  

• Load management system: The available power is distributed among the electrical vehicles to be charged. 

Power overloads are avoided and electrical infrastructure costs mastered, although EV charging needs 

are not considered, and energy use and cost are not optimized.  

• Unidirectional smart charging: Each EV plugged into charging station charges with a specific charging 

profile. The smart charging profiles are set to satisfy EV driver individual needs as a priority. In addition, 

smart charging profiles are defined so that local energy is consumed first, and the charge is done when 

the electricity tariffs are most advantageous. 

• Bidirectional smart charging: The bidirectional charge of EVs allows us to further optimize the electricity 

costs while satisfying individual driver needs. In addition, it enables additional monetization 

opportunities as participation in demand response mechanisms through an aggregator.  

 

Figure 3: EV charging control strategies and benefits at customer side 

Smart charging 

Unidirectional  
Smart charging Bi-directional  
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3 Smart charging methodology  

3.1 Model predictive control for smart charging 

Smart charging is used to generate an optimal dynamic setpoint based on several criteria. These include 

electric vehicle planning, grid energy tariffs, prediction of building consumption, and prediction of local 

energy sources production, if any. 

The Model predictive control (MPC) technique is used to optimize electrical vehicles charging over the next 

24 hours, by anticipating energy demands (EV charging and other loads) as well as local renewable 

production (Figure 4). 

 

Figure 4: Model predictive control for smart charging  

3.1.1 Forecasting energy consumption, EV charging needs, and local production 

A forecasting component is used to predict building energy demand and local energy production. This enables 

short-term energy resource planning and optimizes local energy use. 

The forecasting component uses supervised machine learning techniques to learn the relationship between 

the variables at hand and the variable we intend to forecast. 

• Photovoltaic production forecasting is correlated to the solar radiation forecast provided by a weather 

forecast service. 

• Building energy consumption and EV charging needs can be forecast based on historical energy 

consumption that identifies recurrent patterns. This forecast can be improved by adding additional 

drivers like weather forecast information or EV charging planning. 

The accuracy of the forecast is critical for optimal model predictive control. 

3.1.2 Solving an optimization problem  

The model predictive controller relies on: 

• A model with the description of the electrical network, the assets’ characteristics, and constraints 

that should be respected 

• Forecasts over the following 24 hours include the energy consumption of the installation, 

photovoltaic production, and grid energy tariffs. EV charging demand if not defined by the EV 

drivers can be forecasted as well.  

• Knowledge of the assets’ current state, for example, the state of charge of the electric cars  

By updating the local controller based on the latest site measures and updating forecast information every 15 

minutes, the smart charging algorithms can continuously adapt to prediction and model errors to ensure 

optimal closed-loop control performance. 
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3.2 Smart charging – a showcase 

A showcase was built up to demonstrate the behavior of smart charging methodology. The showcase is 

representative of an office building. For the sake of simplicity, it is considered that there are 9 EV charging 

stations with a maximum capacity of 7kW. Typical values for arrival time, departure time, and energy request 

needs were considered — see Table 1.  

 

The show case applies the MPC smart charging algorithm to compute the charging schedule for each 

electrical vehicle. The charging slots are computed in order to satisfy the individual needs of each EV driver, 

assuring that the electrical vehicle is charged with the requested amount of energy and in the due time. The 

EV charging schedules are computed so that the overall charge does not exceed the power limit, prioritizing 

the charge when the energy is cheaper and when there is a local energy production.  

Charging schedules and overall impact of three control strategies — uncontrolled charging, load 

management, and unidirectional smart charging — are evidenced in Figure 5.  

   

Figure 5: EV charging schedules and overall energy consumption for a) uncontrolled charging, b) load management, 

and c) unidirectional smart charging 

As summarized in Figure 6, smart charging is well adapted and brings the highest benefits at each 

configuration. In any configuration, smart charging assures the satisfaction of the EV driver needs without 

exceeding the power demand. It allows optimal energy cost, especially when the energy tariffs are variable 

or time of use type. It allows also to take the most of solar production, when such is available on site.   
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Figure 6: Comparison of three control strategies – smart charging, load management, and uni-directional smart 

charging at different site configurations  

 

4 Modeling and simulations result at large scale 

4.1 Modeling approach 

Key parameters influence the optimization are regrouped in three blocks (Figure 7), with each block being 

influenced by the choices made in the previous one. 

 

Figure 7:  Parameters impacting optimization 

As shown in Block 1 of Figure 7, our model focuses on three building types which represent the bulk of end-

user charging opportunities: Households (H), multi-dwelling (MD) residential, and commercial and industrial 

buildings (C&I). Four different geographies are selected to understand how local rules and specificities 



EVS36 International Electric Vehicle Symposium and Exhibition      7 

Internal Internal 

impact the value of smart charging: France, Germany, Spain, and California state. For each geography, public 

charging costs are retrieved. This cost is the base element of comparison for our modeling results.  

The exact site configuration can then be retrieved (Block 2): Retail electricity tariffs depend on the local 

retailer offers, building size, and electric loads depend on climate and local behaviors, the number of chargers, 

and their size difference in each segment (and are derived from market forecasts). Distributed energy 

resources (PV, BESS) are sized following optimization prior to any charger installation, and their Capex is 

not taken into account in our economic analysis. Finally, EV presence patterns are designed to reflect driver’s 

behaviors in each segment. 

4.2 Results 

The smart charging outcomes detailed in Figure 8 account for all four optimization levers discussed above 

(scheduling, power/demand charge optimization, energy optimization, and self-consumption optimization). 

These are combined when applicable and differently used across different sectors in different geographies 

depending on the type of smart charging solution, local constraints, local building profiles, and regulation. 

The smart charging system optimizes for all of this in each case. 

Figure 8 provides an Opex perspective with a focus on the electricity bill, without upfront costs (Capex) of 

charging. This enables a direct understanding of the impact to the consumer. Compared to uncontrolled 

charging, smart charging provides significant savings which are further increased if solar PV is available on 

site. 

It is interesting to note that for residential bidirectional cases in California, savings go above 100%, meaning 

that the EV user actually earns money. This is due to a net-metering policy, in which one’s remuneration for 

injection is higher than the one from the grid. If no control is done, an EV battery can be used to buy energy 

at a cheap price and resell it at peak price to the grid. Such a scheme should soon become obsolete. 

 

Figure 8: Reductions in electricity cost of charging in different segments, countries, and cases in 2025 (in % vs. 

uncontrolled charging in the building) 

Compared to public charging, on-site charging (already uncontrolled but even more with a smart one) 

provides cost benefits across most cases and most often significant savings [3]. All the above savings are 

potentially magnified with the provision of grid services, which reveal the true value of a fully smart and 

bidirectional charging strategy (dozens or hundreds of euros in revenues depending on local regulations) [3]. 

 

5 Conclusion 

A smart charging infrastructure ensures buildings have power availability by minimizing the EV charging 

infrastructure’s impact on the existing power distribution system. Smart charging and digitization 

technologies are used to create a better, more efficient charging experience that makes it easier to integrate 

renewable energy and provide resilient power.  
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Smart charging algorithms for buildings allow reduced cost of charging your electric vehicle by intelligently 

scheduling charging times to take advantage of low-cost electricity, maximize the use of clean, low-carbon 

electricity, design the optimal electrical installations, and select the most suitable electricity contract for the 

charging stations.  

EV smart charging is a major enabler of decarbonization of mobility, but also buildings and global energy 

systems. Coupled with EV smart charging, flexible energy sources and loads in buildings offer a decentralized 

approach to energy systems that is more efficient and affordable than centralized paradigms. 

As a foreword, we believe well-designed policies should encourage promotion of charging at building sites, 

promotion time-of-use tariffs, and self-consumption. 
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