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Executive Summary 

While battery-electric trucks (BET) promise tremendous potential for reducing greenhouse gas emissions in 

road freight transport, their deployment necessitates an adequately developed charging infrastructure. 

Knowing the attractiveness of truck stop locations is crucial to ensure sufficient coverage and worthwhile 

charger installation and highlight potential demand for future efforts such as grid expansions as early as 

possible. Thus, this analysis aims to characterize current truck stop locations and derive the most suitable 

locations for BET charging infrastructure in Germany based on real-world truck data and GIS-based 

statistical analyses. Our results demonstrate that the attractiveness of any location is driven by multiple 

concurrent factors rather than one single factor. In addition, we derive three charging infrastructure 

archetypes that may constitute the backbone of a German charging network: (1) Large and high-traffic 

industrial areas such as industry hotspots, harbors, and airports; (2) Hosted rest areas or truck stops along the 

TEN-T network; (3) Industrial areas with designated truck parking areas, including hosting and services.  
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1 Motivation 

Mitigating anthropogenic climate change in line with the Paris Agreement and limiting global warming to 

well below 1.5 degrees forces all countries to rapidly reduce their greenhouse gas (GHG) emissions across 

all sectors. While the European Union is committed to climate neutrality by 2050, the transport sector 

currently emits about one-quarter of the EU's energy-related GHG emissions. While heavy-duty vehicles 

account for under one-tenth of total vehicle stock, their contribution is around 20 % of all transport-related 

emissions [1].  

Battery-electric trucks (BETs) are one promising option to reduce those emissions. Certain models are already 

available or have been announced by all European truck manufacturers for the next years. Fortunately, BETs 

benefit from recent passenger car battery innovations such as rapidly decreasing production costs, increasing 

volumetric energy density and specific energy, enhanced cyclic and calendrical aging, and improved fast 

charging capability [2, 3]. Thus, a steep market ramp-up is expected in the upcoming years [4]. However, 

one crucial factor for the widespread adoption of BETs is an adequately developed charging infrastructure to 

facilitate convenient and reliable operations in light of limited electric ranges [5]. This raises one central 

question: Where to build charging infrastructure for BETs?  
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EU policymakers have addressed this issue, yet concrete recommendations and site locations are uncertain. 

The recently presented "Fit for 55" package by the European Commission proposes the Alternative Fuels 

Infrastructure Regulation (AFIR) so that sufficient charging infrastructure for trucks along the most important 

European highways (TEN-T network) will be mandatory. This proposal includes, among others, minimum 

power requirements, a minimum number of charging points, and distance intervals within this network [6]. 

However, the concrete realization will be handed to the national authorities and private organizations. 

Exemplary, the National Centre for Charging Infrastructure (NLL) in Germany hosts the so-called 

"StandortTool" [7]. This tool is based on transport demand modeling using geospatial and socio-economic 

data, vehicle owner mobility patterns, and grid infrastructure to extrapolate the number of charging events 

per area and highlight particularly well-suited areas. However, this tool only handles passenger cars and may 

be updated to handle trucks.  

While charging infrastructure site selection is well documented and differentiated for passenger cars, insights 

for heavy-duty trucks are few or suffer from the trade-off between geographic coverage and level of detail. 

Metais et al. [5] and Pagany et al. [8] reviewed infrastructure modeling for general plug-in electric vehicles, 

highlighting differences in the used data types, different demand allocation approaches, different optimization 

problems, optimization targets, and further problem extensions. Additionally, Al-Hanahi et al. [9] highlighted 

key challenges and future work for charging infrastructures of commercial electric vehicles. Notable for 

heavy-duty trucks, T&E [10] and Speth et al. [11] used NUTS3-level freight-flow data to calculate potential 

traffic intensities and determine charging infrastructure locations along the TEN-T network. Similarly, Tong 

et al. [12] determined on-route charging locations along the US national highway network using freight-flow 

data and generalized truck movements. However, these broad conceptual networks have no precise location 

information, and the real-world conditions for selected locations are unknown, making the feasibility 

questionable. By contrast, the better availability of empirical data from passenger cars facilitates a higher 

level of detail, particularly using Geographical Information Systems (GIS) data. Mortimer et al. [13] 

proposed an installation procedure based on real-world utilization data from over 21,000 charging stations, 

matched those data to 23 categories with places of common interest (POI), calculated the correlation using 

linear regression, and used these findings to extrapolate expansion strategies on so far unexploited areas. 

Kaya et al. [14] used a multi-criteria decision analysis (MCDA) with differing weighting methods and 

covering socio-economic, geographical, energy-supply, traffic and road network, and POI data for the optimal 

planning of new sites. Schmidt et al. [15] proposed a five-stage multi-criteria and GIS-based location 

methodology for urban areas covering similar categories and using a light beam search heuristic to constitute 

different service networks in Poznan, Poland.  

In summary, while various approaches, well-known frameworks, and multiple assessments for passenger cars 

exist, detailed insights for trucks with special needs, such as extra parking and maneuvering space, distinct 

operational patterns, and higher power requirements are limited. Consequently, this paper aims to provide 

insights into the attractiveness of truck stop locations and determines potential charging locations. Findings 

may support a coordinated charging infrastructure deployment for trucks and help infrastructure providers 

find the most attractive locations, which entails high infrastructure profitability. 

This paper is structured as follows. Section 2 describes the data and applied methods. The data section covers 

GPS truck stop data and data enhancement using different sources. Section 3 contains the results. This paper 

closes with a discussion in section 4 and conclusions in section 5. 
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2 Data and methods 

2.1 Data 

Truck stop data  

This paper uses European truck stop data from the Association des Constructeurs Européens d'Automobiles 

(ACEA), including seven truck manufacturers (OEM) and heavy diesel trucks with over 7.5 tons of gross 

vehicle weight. This data have been analyzed by Plötz and Speth [16], where methods and details are 

documented. From over 750,000 GPS-based locations recorded over one year, using several filter criteria and 

the DBSCAN algorithm yielded 𝑚∗ =   34,227 clustered locations covering stops from long-haul and 

regional trucks. Clusters contain at least three original locations. Usual cluster sizes range from 300 to 450 m. 

While data coverage for certain small European countries is limited, coverage for Central, Western, and 

Northern Europe is more representative [16]  

Clustered data comprises the geographical location (latitude and longitude of the cluster centroid) and the 

average number of stops (𝑛𝑜𝑠) per day. This information is used to calibrate and weigh the attractiveness of 

locations, ensuring high practical relevance. The following results are limited to Germany, with processing 

𝑚 =   8,308 truck stop locations from regional and long-haul trucks. 

Data enhancement  

The data enhancement process assigns corresponding attributes to each stop location. Attribute selection is 

inspired by expert opinions and findings from similar studies, such as [13–15, 17], comprising socio-

economic, geographical, traffic, road network, and POI data categories. Categories, corresponding attributes, 

and data types are listed in Table 1. Five categories with n = 34 attributes are combined to characterize each 

stop location. 

The category Road Network involves the proximity of locations to the TEN-T network, whereas we 

differentiate between the Core and the Comprehensive Network as defined by the European Commission DG 

MOVE - TENtec Information System. The nearest distance of any location to the networks is calculated as 

an aerial distance (haversine formula) and, thus, unambiguous. This data is available for the EU, EFTA, and 

the UK.  

The category Traffic incorporates information on the regional traffic volume represented by the total annual 

journeys inside the corresponding NUTS-3 area. The affiliation of any location to a NUTS3 region is 

unambiguous. This information is derived from two datasets provided by Eurostat [18]: (1) Annual road 

freight transport by region of unloading (road_go_ta_ru); (2) Annual road freight transport by region of 

loading (road_go_ta_rl). For each country, numerical values are rescaled with the maximum and minimum 

so that all values are between 0 and 1. Accordingly, 1 indicates the highest trip-intensity level inside a country 

and 0 the lowest. We use 2020 as the reference year as it is the last complete year, incl. the UK.  

The category Urbanization incorporates information on the degree of urbanization, providing insights into 

socio-demographic factors. Based on the DEGURBA dataset provided by Eurostat [19], we differentiate 

between three areas: (1) cities and densely populated areas; (2) towns, suburbs, and intermediate-density 

areas; (3) rural and thinly populated areas. The affiliation of any location to a DEGURBA class is 

unambiguous. 

The category Land Use incorporates information on the biophysical characteristics of the Earth's surface 

based on CORINE Land Cover (CLC) data provided by the Copernicus Land Monitoring Service (CLMS) 

[20]. While the original data distinguishes between 38 labels, we aggregate similar labels and then distinguish 

only 7: (1) Urban areas; (2) Industrial and commercial areas; (3) Transport areas such as airports, port areas, 

and transport-associated land; (4) Mine, dump and construction sites (MDC); (5) Agricultural areas such as 

arable land and pastures; (6) Natural areas such as forests and semi-natural areas; (7) Other areas. The 

affiliation of any location to a CLC class is unambiguous. We use 2018 as the latest available reference year. 

The category POI incorporates information on specific conditions at the respective location, thus 

characterizing the location more precisely. This information is based on the PTV Developer Geocoding API 

[21] that combines several other data sources, such as data from HERE Technologies. This commercial data 
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source was used under the Freemium model, allowing up to 100,000 free queries per month. The maximum 

search radius is set to 2000 m, and the maximum number of returns is 50 items. While the original data 

distinguishes between 438 POI labels (so-called navteq-lcms items), we aggregate similar labels and then 

distinguish only 22 POI labels: (1) Accommodations such as hotels or motels; (2) Attractions such as sights, 

natural and geographical attractions, and leisure and outdoor facilities; (3) Automotive businesses such as 

repair services, dealerships, and service facilities; (4) Federal or public businesses such as police and 

ambulance; (5) Retail businesses such as groceries, shops, and stores; (6) Commercial businesses or service 

providers; (7) Consumer businesses or service providers; (8) Truck businesses such as repair services, 

dealerships, and service facilities; (9) Restaurants; (10) Entertainment venues; (11) Facilities such as 

hospitals, sports venues, and community facilities; (12) Fueling stations; (13) Large industries; (14) Parking 

areas; (15) Rest areas with full service covering restroom facilities, parking, and shops; (16) Rest areas with 

limited service; (17) Cargo transport facilities such as warehouses, distribution centers, and courier services ; 

(18) Cargo airport areas; (19) Seaports and container terminals; (20) Public transport offers such as bus or 

train stations; (21) Truck parking with designated area for parking heavy trucks; (22) Truck stops. One 

location may have several POI labels. More details can be obtained from the API documentation.  

 

Table 1: Attributes for truck stop location characterization 

Category Attribute (short) Variable 
Unique 

classification 
Info 

Road Network TEN-T Core Network 𝑡𝑡𝐶𝑜𝑟𝑒 x Num. distance in m 

 TEN-T Compr. Network 𝑡𝑡𝐶𝑜𝑚𝑝 x Num. distance in m 

Traffic Traffic volume 𝑡𝑖𝑁3 x Num. value 

Degree of Urbanization City 𝑢𝑟𝑏𝑎1 x Binary 

 Town, Suburbs 𝑢𝑟𝑏𝑎2 x Binary 

 Rural 𝑢𝑟𝑏𝑎3 x Binary 

Landuse Urban Fabric 𝑐𝑙𝑐𝑈𝑟𝑏 x Binary 

 Transport 𝑐𝑙𝑐𝑇𝑟𝑎 x Binary 

 Natural 𝑐𝑙𝑐𝑁𝑎𝑡 x Binary 

 MDC  𝑐𝑙𝑐𝑀𝐷𝐶 x Binary 

 Industrial, Commercial 𝑐𝑙𝑐𝐼𝐶 x Binary 

 Agricultural 𝑐𝑙𝑐𝐴𝐺 x Binary 

POI Accommodation 𝑝𝑜𝑖𝐴𝑐𝑐 - Num. distance in m 

 Attractions 𝑝𝑜𝑖𝐴𝑡𝑡 - Num. distance in m 

 Business Automotive 𝑝𝑜𝑖𝐵𝐴 - Num. distance in m 

 Business Federal / Public 𝑝𝑜𝑖𝐵𝐹𝑃 - Num. distance in m 

 Business Retail 𝑝𝑜𝑖𝐵𝑅 - Num. distance in m 

 Business Commerical 𝑝𝑜𝑖𝐶𝑜𝑚 - Num. distance in m 

 Business Consumer 𝑝𝑜𝑖𝐶𝑜𝑛 - Num. distance in m 

 Business Truck 𝑝𝑜𝑖𝑇𝑟 - Num. distance in m 

 Restaurants 𝑝𝑜𝑖𝑅 - Num. distance in m 

 Entertainment 𝑝𝑜𝑖𝐸 - Num. distance in m 

 Facilities 𝑝𝑜𝑖𝐹 - Num. distance in m 

 Fueling station 𝑝𝑜𝑖𝐹𝑆 - Num. distance in m 
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 Industry 𝑝𝑜𝑖𝐼 - Num. distance in m 

 Parking 𝑝𝑜𝑖𝑃 - Num. distance in m 

 Rest area (full service) 𝑝𝑜𝑖𝑅𝐴1 - Num. distance in m 

 Rest area 𝑝𝑜𝑖𝑅𝐴2 - Num. distance in m 

 Transport Cargo 𝑝𝑜𝑖𝑇𝐶 - Num. distance in m 

 Transport Cargo Airport 𝑝𝑜𝑖𝑇𝐶𝐴 - Num. distance in m 

 Transport Cargo Harbour 𝑝𝑜𝑖𝑇𝐶𝐻 - Num. distance in m 

 Transport Public 𝑝𝑜𝑖𝑇𝑃 - Num. distance in m 

 Truck Parking 𝑝𝑜𝑖𝑇𝑟𝑃 - Num. distance in m 

 Truckstop 𝑝𝑜𝑖𝑇𝑟𝑆 - Num. distance in m 

 

Further attributes are required to reflect particularities for charging infrastructure. Thus, we include an 

additional category that represents Energy Supply. This covers two aspects, summarized in Table 2: (1) The 

availability of surrounding grid substations to represent a potential expansion cost minimization. Geo-

coordinate information is derived from OpenStreetMaps (OSM) using the overpass-API. The distance of any 

location to the nearest substation is calculated as an aerial distance (haversine formula) and, thus, 

unambiguous. We limit the query to stations with available power-level information and cut off at the 

distribution grid level. (2) The availability of existing high-power charging infrastructure (HPC, over 50 kW) 

for passenger cars to represent a potential utilization of synergies. Information is derived from 

OpenChargeMaps (OCM) for general coverage. To support this, we use the charging station register provided 

by the Bundesnetzagentur [22] as a country-specific data source. The distance of any location to the nearest 

HPC is calculated as an aerial distance (haversine formula) and, thus, unambiguous. As a result, six categories 

with  𝑛∗ = 36 attributes are combined to characterize the attractiveness of potential public charging locations. 

 

Table 2: Additional attributes for charging locations 

Category Attribute (short) Variable 
Unique 

classification 
Type and Unit 

Energy supply Substation 𝑒𝑐𝑆𝑢𝑏 x Num. distance in m 

 HPC for cars 𝑒𝑐𝐻𝑃𝐶  x Num. distance in m 

Potential public charging locations 

Potential public charging locations are based on three different datasets: (1) We derive all parking locations 

from OSM, resulting in 523,340 potential locations. This data is filtered, so only truck-accessible and non-

private parking areas with over 200 m² remain. This yields 2,716 potential locations. (2) We derive all rest 

area and road service locations with over 200 m² from OSM, resulting in 1,912 potential locations. (3) We 

use 2,217 highway rest area locations provided by the NOW GmbH.  

The final public charging locations are determined by merging these three datasets. Therefore, we use the 

DBSCAN algorithm to avoid duplicates (e.g., not exactly matching geo-coordinates for the same location) 

and combine charging locations (e.g., on opposite street sides). The maximal cluster distance (epsilon 

parameter) is set to 500 m, the minimal number of points in a cluster (minPts parameter) is set to 1, and 

border points are included. This yields 𝑝 =   2,137  potential locations. 
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2.2 Method 

Our multi-criteria and GIS-based assessment involves five steps and follows, in general, the process from 

Kaya et al. [14]. All process steps are explained below, and all calculations are executed with Python. 

Phase 1: Characterization of current truck stop locations 

First, we set up the 𝑚 × 𝑛 matrix 𝐷 containing the information on each feature 𝑗 ∈  {1, . . , 𝑛} for each actual 

truck stop location 𝑖 ∈  {1, . . , 𝑚}.  

𝐷 = (
𝑑11 ⋯ 𝑑1𝑛

⋮ ⋱ ⋮
𝑑𝑚1 ⋯ 𝑑𝑚𝑛

) (1) 

For the feature categories Urbanization and Landuse, this information is binary, meaning that a one indicates 

that this feature matches, and a zero indicates that it does not.  

For the remaining categories, we assume that the closer a feature is to the truck stop location, the stronger its 

influence is. Thus, a feature in the immediate neighborhood of the truck stop location has the strongest 

influence, while this vanishes with distance. We impose a maximum relevant distance 𝑑𝑗 to limit the effective 

range of any feature and thus prevent data noise. Assuming a linear characteristic, the effective impact 𝑑𝑖𝑗 of 

each feature 𝑗 on each truck stop location 𝑖 is calculated by:  

𝑑𝑖𝑗 =  
𝑑𝑗 − 𝑑𝑖𝑠𝑡(𝑥𝑖𝑗)

𝑑𝑗
, 𝑑𝑖𝑗 ∈  {0, . . ,1} for i ∈ {1, . . , 𝑚} and j ∈ {1, . . , 𝑛} (2) 

This maximum relevant distance per feature 𝑑𝑗 is calculated using the elbow method heuristic and all 

𝑚∗ =   34,227 truck stop locations. We calculated the minimum distance from each truck stop location to 

the TEN-T Core / Comprehensive Network for the Road Network category. For the POI category, all possible 

returns from the PTV API (cf. max 50 items within a 2000 m radius) are collected for each stop location. 

Finally, all distances from all stop locations are merged and sorted in ascending order. Given all these 

occurring distances, we derive the empirical cumulative density function (ECDF) 𝑓𝐸𝐶𝐷𝐹,𝑗 and apply the 

elbow method heuristic for each feature. This method determines where the ECDF has its maximum 

curvature, representing the distance from which the incremental benefit per additional relevant distance 

decreases. This value ranges from 290 to 1,200 m. However, depending on the ECDF curvature, results may 

be inaccurate. Therefore, we use the 80 percent threshold distance [𝑓𝐸𝐶𝐷𝐹,𝑗
−1 (0.8)] as an alternative value. 

This value ranges from 250 to 1,470 m. One of these two methods determines the value for 𝑑𝑘𝑛𝑒𝑒,𝑗. To 

reflect uncertainty regarding cluster size and centroid (cf. Section 2), we set the minimum value to 500 m. 

Thus, the maximum relevant distance 𝑑𝑗 is calculated as follows:  

𝑑𝑗 = max(𝑑𝑗,𝑘𝑛𝑒𝑒 , 500) 𝑖𝑛 𝑚 𝑓𝑜𝑟  j ∈ {1, . . , 𝑛} (3) 

The maximum relevant distance ranges from 500 to 1050 m across all features. Figure 1 visualizes the 

procedure for the category POI Fueling Station (left, maximum relevant distance = 700 m, blue line) and 

Truck Parking (right, maximum relevant distance = 880 m, gray line).  

Site#_CTVL0014905f44ab0204af790c651ab2c9d5457
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Figure 1: Determination of the maximum relevant distance per feature. Own illustration. 

 

Phase 2: Statistical analysis  

Given our 𝑚 × 𝑛 matrix 𝐷, we use the archetypal analysis to identify extreme observations (so-called 

archetypes) in this matrix and, thus, capture heterogeneity among observations. Accordingly, this statistical 

analysis helps to improve the understanding of the features and their dependencies. As a result, all the 

observations may be reproduced as mixtures (linear combinations) of those extremes. This contradicts typical 

cluster analyses that rather homogenize these observations. These archetypes are selected by minimizing the 

squared error of each observation as a mixture of archetypes using the Python package [23]. 

Phase 3: Weighting process 

For the weighting process, we use the average number of stops 𝑛𝑜𝑠𝑖 for each truck stop location 𝑖 ∈  {1, . . , 𝑚} 

for empirical weighting. These weights quantify the importance of parking characteristics for truck stop 

locations and enable a feature ranking. This contradicts typical subjective MCDA methods such as AHP, 

PROMETHEE, or VIKOR to determine such weightings. Accordingly, we calculate the standardized sum 

product based on the feature matrix 𝐷 and the average number of stops for each truck stop location. That 

said, the weight 𝑤𝑗 of each feature is calculated as follows:  

𝑤𝑗 =  
∑ 𝑑𝑖𝑗 ∙ 𝑛𝑜𝑠𝑖

𝑚
𝑖=1

∑ ∑ 𝑑𝑖𝑗 ∙ 𝑛𝑜𝑠𝑖
𝑚
𝑖=1

𝑛
𝑗=1

, 𝑗 = 1,2, … , 𝑛 (4) 

Phase 4: Attractiveness of potential public charging locations for future truck charging locations  

Last, we use these feature weights for each potential charging infrastructure location 𝑘 ∈  {1, . . , 𝑝} and apply 

the weighted sum method (WSM) to determine an attractiveness score for each location. As empirical 

weighting was impossible for the category Energy Supply, we assume suitable weights by setting the mean 

value from 𝑤𝑗. Likewise, the maximum relevant distance is assumed with 750 m. This results in the following 

adjusted formula for calculating the score 𝑆𝑖∗ of a parking location: 

𝑆𝑖∗ =  ∑ 𝑤∗
𝑗  ∙  𝑑𝑘𝑗

𝑛∗

𝑗=1

,   𝑓𝑜𝑟 𝑘 ∈ {1, . . , 𝑝} (5) 

𝑤∗
𝑗 =  

𝑤𝑗

∑ 𝑤𝑗
𝑛∗

𝑗=1

, 𝑗 = 1,2, … , 𝑛∗ (6) 

 

  

with 
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3 Results 

The result section covers three sections: the calculated feature weight, the archetypal analysis results, and the 

potential locations' final attractiveness.  

3.1 Feature weights and ranks of feature importance 

Table 3 shows the importance of parking characteristics and the feature ranking based on the weighing process. 

Scores range from almost 0 to 10.1 percent. The top 10 features are highlighted with a cut-off value at 4.3 

percent. The mean value is 2.9 percent, whereas the median is 1.7 percent. It follows that industrial areas 

with many potential business destinations along the TEN-T Core Network are most suited. We highlight that 

23 features have weights above 1 percent, indicating the wide spread of feature weights and large 

heterogeneity. 

 

Table 3: Feature weights and ranking 

Variable 𝒕𝒕𝑪𝒐𝒓𝒆 𝒕𝒕𝑪𝒐𝒎𝒑 𝒕𝒊𝑵𝟑 𝒖𝒓𝒃𝒂𝟏 𝒖𝒓𝒃𝒂𝟐 𝒖𝒓𝒃𝒂𝟑 𝒄𝒍𝒄𝑼𝒓𝒃 𝒄𝒍𝒄𝑻𝒓𝒂 𝒄𝒍𝒄𝑵𝒂𝒕 𝒄𝒍𝒄𝑴𝑫𝑪 𝒄𝒍𝒄𝑰𝑪 𝒄𝒍𝒄𝑨𝑮  

Score in % 5.3 2.0 2.6 3.8 7.0 4.2 0.8 1.0 1.7 0.1 8.3 3.0  

Rank 7    5      3   

Variable 𝒑𝒐𝒊𝑨𝒄𝒄 𝒑𝒐𝒊𝑨𝒕𝒕 𝒑𝒐𝒊𝑩𝑨 𝒑𝒐𝒊𝑩𝑭𝑷 𝒑𝒐𝒊𝑩𝑹 𝒑𝒐𝒊𝑪𝒐𝒎 𝒑𝒐𝒊𝑪𝒐𝒏 𝒑𝒐𝒊𝑻𝒓 𝒑𝒐𝒊𝑹 𝒑𝒐𝒊𝑬 𝒑𝒐𝒊𝑭 𝒑𝒐𝒊𝑭𝑺 𝒑𝒐𝒊𝑰 

Score in % 0.3 0.5 6.6 1.2 7.1 10.1 10.1 1.3 2.4 1.3 4.6 4.3 1.6 

Rank   6  4 1 2    8 9  

Variable 𝒑𝒐𝒊𝑷 𝒑𝒐𝒊𝑹𝑨𝟏 𝒑𝒐𝒊𝑹𝑨𝟐 𝒑𝒐𝒊𝑻𝑪 𝒑𝒐𝒊𝑻𝑪𝑨 𝒑𝒐𝒊𝑻𝑪𝑯 𝒑𝒐𝒊𝑻𝑷 𝒑𝒐𝒊𝑻𝒓𝑷 𝒑𝒐𝒊𝑻𝒓𝑺     

Score in % 0.3 0.2 0.0 4.3 0.1 0.2 2.6 0.7 0.3     

Rank    10          

 

3.2 Archetypal analysis 

Figure 2 shows the results from the archetypal analysis. Given the particular feature relevance as indicated 

by the color scale, we highlight three archetypes: (A1) Regions with high traffic volume resulting from large 

businesses, industries, or transport facilities, such as cargo airports or seaports, along the TEN-T Network; 

(A2) Hosted rest areas and truck stops along the Ten-T Network, ideally close to business entities and at 

suburb metropolitan areas; (A3) Industrial areas with a wide range of services and stores and designated truck 

parking areas. In contrast, the others archetype functions as a composite of other relevant features. 

 

 

Figure 2: Archetype vectors with the respective feature specifications. Own illustration. 
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3.3 Attractiveness of public parking areas for future charging locations for BETs 

Figure 3 visualizes the distribution of the relative attractiveness score of 2,137 potential locations in 

Germany as a boxplot. The distribution is skewed, and many locations have low to medium attractiveness. 

The median is 24.8 percent, the average value is 30.3 percent, and the standard deviation is 21.8 percent. 

Additionally, Figure 4 visualizes all locations as an HTML-based map. This map contains all locations as 

small circles and their color-coded attractiveness. The zoom focuses on Baden-Wuerttemberg to underpin 

the level of detail. 

 

Figure 3: Boxplot of the relative attractiveness score. Own illustration. 

 

 

Figure 4: Attractiveness evaluation of potential truck parking areas in Germany. Own illustration. 
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4 Discussion 

The present paper aimed to characterize current truck stop locations and derive the most suitable locations 

for BET charging infrastructure. While we used real-world data to ensure high practical relevance, we state 

that our results embed some uncertainty and acknowledge some limitations.   

We were not allowed to use the original data for our assessment but used the processed and published by 

Plötz and Speth [16]. The resulting cluster centroids represent, so to say, fictive truck stop locations 

representing only a fraction of the original data. An alternative may be using the center of gravity per cluster. 

Regardless, we chose a large search radius and set the maximum relevant distance to over 500 m. Here, we 

note the difference between aerial and real-world road distances.  

Our method uses a matrix that combines binary and distance-based variables. Since we only consider the 

relevance of the nearest feature, information about how many features are present is lost. Our assessment 

uses rather simple methods instead of more complex ones, such as neural networks or decision trees, to 

uncover new relations. Plus, one might determine the feature weighting with an optimization approach by 

using the feature weights as optimization variables to maximize the correlation between the predicted and 

actual average number of stops for all truck stop locations. 

Our approach uses many different data sources and merges heterogeneous data types. The latter comprises, 

among others, point-related vs. area-related information or different spacial dimensions among the features. 

While other attributes may be added, information on data completeness per source is missing. Last, we used 

publically available data, but certain information is generally not publically available. This comprises, for 

instance, the information on available truck parking lots or the available local power grid capacity. Last, we 

highlight that we only considered potential public charging locations and no private locations.  

Last, the analysis could be expanded to Europe since special emphasis is given to ensure that all data sources 

are available at the European level. However, this broader study would exceed the scope of this conference 

paper, focusing on methodology and data enhancement. Plus, the current approach ignores interdependencies 

between sites. That said, it is reasonable that in areas with a high density of potential sites, not all sites may 

be equipped with charging infrastructure. Thus, identified sites may also be combined with other optimization 

or localization approaches, such as [11], to ensure coverage. Accordingly, this analysis is only the first high-

level analysis, and a detailed assessment by the local charging infrastructure operator must happen.  

5 Conclusion 

The present paper assessed the attractiveness of current truck stop locations by choosing a GIS-based multi-

criteria analysis to determine the most important attributes. While related studies use weighting methods 

based on subjective weighting processes, this study benefits from real-world data for deriving the feature 

weights. Our results demonstrate the high attractiveness of industrial areas with many potential business 

destinations along the most important European highways (TEN-T network), which may occur as trivial at 

first sight. However, our results imply that no particular feature determines this or any other attractiveness of 

current truck stop locations. In contrast, it is rather the distinct feature combination that determines 

attractiveness.  

To improve the understanding of the features and their dependencies, we used the archetypal analysis so that 

all observations may be reproduced as mixtures of those extremes. These extremes may constitute the 

backbone of a German BET charging network, covering industry hotspots, hosted rest areas or truck stops 

along the TEN-T network, and industrial areas with designated truck parking areas.  

Finally, the attractiveness of 2,137 potential locations for public BET charging infrastructure was evaluated, 

which has not been conducted in any study before. Apart from location planning, station sizing and defining 

power requirements remain unanswered. In summary, this paper and its methods serve as a comprehensive 

and useful framework to determine charging infrastructure locations for BETs.  

 

 

 

Truck#_CTVL0010f4800be56bb4e00bd4e596a292773c3
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