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Executive Summary 
California’s aggressive electric vehicle (EV) policies may generate a large burden of EV charging load on 

the electric distribution system. In this study, we investigate the development of overloading in the 

distribution networks, using feeder-level capacity and load data from the grid, and a travel demand model 

together with empirical EV charging data. We select twelve representative areas across the territories of the 

three major investor-owned utilities in California. Overloading conditions are highly diverse within our case 

studies. Three out of the twelve areas that we examine have frequent overloading over 50% of the time 

starting between 2028 and 2040. Four areas will be challenged by intense overloading, where EV charging 

load can reach up to 500% of the remaining capacity headroom. Our findings indicate a need for infrastructure 

upgrade in some parts of the Californian distribution system within the next two decades. However, the 

spatial heterogeneity in our results suggest a need for large-scale case-by-case analysis. 
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1 Introduction 
An acceleration of electric vehicle (EV) uptake is happening in the transportation sector. According to the 
International Energy Agency (IEA), the global EV stock has grown over 10 million in the past decade, and 
is expected to reach as high as 300 million by 2030 [1]. The state of California has been setting ambitious 
policies for greenhouse gas (GHG) emissions reduction in the transportation sector, including encouraging 
the growth of EV sales. The state has a goal of 5 million EVs on the road in California by 2030 and recent 
updates to the Zero Emissions Vehicle rule sets requirements for 100% sales of new passenger vehicles to be 
electric by 2035. This widespread adoption of EVs in the future will lead to a large growth in electricity 
charging load, which can contribute to challenges in the operation and planning of the power system.   

A vast body of literature has investigated the possible impact of adding unmanaged charging loads to existing 
power systems, either on the bulk level (generation and transmission)[2]–[4] or on the distribution level [5]–
[17]. Since EV charging usually takes place in the distribution grid, before the uncoordinated charging affects 
the generation dispatch and transmission congestion, the distribution network would likely encounter the 
challenges first. Furthermore, charging EVs based on wholesale market prices without considering 
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distribution constraints may lead to even more severe congestion than unmanaged charging[5]. Therefore, it 
is especially important to understand how constrained the distribution grid will be and how much upgrade 
should be in place for the integration of future EV charging demand into the distribution system. 

Many case studies have estimated the potential reinforcement needs of distribution grid infrastructure due to 
uncoordinated EV charging load. For example, up to 49% of the distribution transformers’ capacity thresholds 
are exceeded in the study by Verzijlbergh et al.[6]; Fernández et al.[7] calculated that with 60% of total 
vehicles being EV, investment cost on distribution network will increase by up to 15%; 60% of the feeders 
in San Francisco Bay area will exceed their loading limit according to Coignard et al.[8]; 28% of the 
distribution network in Great Britain will require upgrade according to Crozier et al.[9]; Borlaug et al.[10] 
investigated the impact of heavy duty electric truck’s depot charging, considering not only the monetary cost 
of substation upgrade, but also the time needed to implement the reinforcement; González et al.[11] focused 
on the feeder-level impact of direct current (DC) fast charging.  

Results of these studies are highly varied due to the high heterogeneity in the characteristics of the chosen 
distribution networks. Some of the studies use hypothetical network models instead of real world 
networks[7], [12]. Majority of the researches are limited in scope, such as a single workplace[13], a single 
feeder[11], [14], a single distribution network with one substation and several feeders[7], [15]–[17]. Only a 
handful of studies cover distribution system with several substations: Coignard et al.[8] studied the San 
Francisco Bay area with 8 substations; Borlaug et al.[10] performed the study for part of the distribution grid 
in Texas with 36 substations; Verzijlbergh et al.[6] studied part of the distribution grid in the Netherlands 
with 55 substations; Crozier et al.[9] studied the distribution system of the whole Great Britain but the 
simulation is based on 3 typical network models. In this study, we examine 12 distribution level areas within 
California across the utility territories Pacific Gas & Electric (PG&E, covering most of northern California), 
Southern California Edison (SCE, covering the greater Los Angeles area), and San Diego Gas & Electric 
(SDG&E, covering the greater San Diego area). The areas are selected in order to cover a combination of 
residential, commercial, and retail oriented locations that represent a variety of load profiles (both in shape 
and magnitude). 

Another challenge of simulating the real-world impact of future EVs on the distribution system is the 
uncertainty in charging loads. Many studies use conventional vehicle travel data to simulate the charging 
demand and pattern of future EVs, usually assuming that EVs would start charging immediately after 
arrival[5]–[8], [12], [15], [16]. However, real-world EV charging behaviors can be largely different from 
these simplified assumptions[18]. But very few studies utilize empirical travel and charging data from 
EVs[9], [13], [14], [17]. In this study, we simulate future EV charging loads from both data loggers and public 
charging service providers to address the heterogeneity in EV charging behaviors under home charging, 
public charging, and workplace charging. Uniquely, our work employs the use of a high-resolution state-wide 
travel demand model that provides vehicle flows based on trip purposes—allowing us to accurately 
characterize the breakdown of home, public, and workplace charging. The proportion of electric vehicles 
among the population of vehicles traveling into our regions of study are forecasted based on California’s 
regulatory requirements, allowing us to provide better insight into the timing of distribution grid impacts 
from additional EV charging load. 

The remainder of the paper is structured as follows: Section 2 explains the methodology and data sources 
used in this research. Section 3 presents the primary results on the development of overloading conditions in 
our case studies. And in section 4, we conclude with a discussion on the major implications and outlook of 
our work. 

2 Methods 
The general framework of this study can be seen in Fig. 1. We utilize spatial and temporal empirical data at 
feeder level from both the grid and the EV side to project the hourly EV charging load and baseload profile 
by feeder in the future. These results are then compared with the feeder capacities, to determine the frequency 
and intensity of feeder capacity exceedance resulted from EV uptake. 



EVS36 International Electric Vehicle Symposium and Exhibition      3 

 
Figure1: Data sources (blue), intermediate data (gray), and outputs (green) in the general research framework 

2.1 Distribution Grid Data 
In 2016, the California Public Utilities Commission (CPUC) required utilities to perform Integration Capacity 
Analysis (ICA) for the distribution system. The ICA maps from PG&E, SCE, and SDG&E provide publicly 
available data on the spatial pattern of the distribution network down to the circuit level, feeder capacities, 
as well as hourly load profiles per feeder. The datasets also include future upgrade plans of the distribution 
grid, along with projections on the growth of feeder-level distribution energy resources (DER) such as rooftop 
photovoltaic (PV). The ICA data contains both thermal and voltage load allowances for their distribution 
circuit segments across each of the three major utilities in California. These load allowances are provided on 
an hourly basis by the maximum and minimum load days observed in each month of the year. These are the 
primary elements of interest that allow us to observe whether additional charging loads exceed these load 
allowances and the extent to which they are exceeded on the basis of magnitude and time. 

In this study, we select a total of twelve census block group areas, four block groups in each of the utilities 
of PG&E (Berkeley, West Davis, San Francisco, and Mountain View), SCE (Brea, Irvine, Manhattan Beach, 
and Walnut), and SDG&E (downtown San Diego, Mira Mesa, La Jolla, and University City). These areas 
were selected based on their diversity and variation of building types including residential, commercial, 
shopping areas, and schools. A map and basic characteristics of each of the areas can be found in Table 1. 
Due to discrepancies in the load profile data from SCE, we scaled the data to ensure it is consistent in 
magnitude with the load data at circuit segment level in other utilities and that the ratio of load to the thermal 
load threshold is also consistent. 
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Table 1 Study Areas in Three Major Utilities 
PG

&
E 

Berkeley 

 
Urban; residential, 

commercial, and retail 

Mountain View 

 
Suburban; residential 

Mission District 

 
Urban; residential, commercial, retail 

Davis 

 
Rural; residential, school 

SC
E 

Brea 

 
Urban; residential, retail 

Irvine 

 
Urban; residential, school 

Manhattan Beach 

 
Urban; residential, commercial 

Walnut 

 
Suburban; residential 

SD
G

&
E 

Downtown SD 

 
Urban; residential, 
commercial, retail 

University City 

 
Suburban, residential 

La Jolla 

 
Urban; commercial, residential 

Mira Mesa 

 
Suburban; residential, retail 



EVS36 International Electric Vehicle Symposium and Exhibition      5 

2.2 Mobility Data 
To determine the additional load for charging electric vehicles in each of the selected regions seen in Table 
1, we first calculate the number of EVs traveling in each of the regions per day and their respective purposes 
for travel based on the California Statewide Travel Demand Model (CSTDM). This model allows us to obtain 
the counts of vehicles traveling through each of the study areas and whether they would be traveling to 
residential areas, workplaces, or other public use locations (dining, shopping, school, recreation, etc.). The 
extent to which the vehicles in the region are electrified is determined as a proportion of the total number of 
electric vehicles in California relative to the total number of light-duty vehicles in the state. This proportion 
is calculated by assuming a linear growth in EV sales, up to 100% EVs within all new light-duty vehicles 
sold in 2035, which aligns with California’s newly proposed standard1. This assumption projects a state-wide 
EV adoption of nearly 7 million by 2030 - which is more than 30% above the 5 million goal to be reached 
by 2030 - and over 21 million EVs on the road by 2045. 

With the number of EVs that travel to each of the regions on different purposes (categorized as home, work, 
and public), we are able to simulate the EV charging profiles in these areas from empirical EV charging data. 
For home charging and workplace charging, we employ data from the eVMT project, which is collected from 
data loggers on a total of 300 EVs in multiple utility areas(19). And for public charging, we adopt a dataset 
consisting of charging records from several charging network providers (including EVgo, Chargepoint, and 
Electrify America) from 2014 to 2019. The datasets contain information of each single charging event, 
including the start and end time and energy charged. The distribution of the start hour of the charging events 
in different locations are depicted in Fig. 2. We can see that workplace charging mostly start around 8:00 in 
the morning, when people arrive at work; and home charging usually start after 18:00 when EV owners get 
back; the start time of public charging tend to be distributed in the middle, when people are running errands. 
Table 2 shows some other statistics of the charging data. In general, the duration of public charging events 
are significantly shorter than home and workplace charging events. And the energy charged per charging 
event in public charging tends to be a lot higher than those in home and workplace charging. This is due to 
the higher proportion of DC fast chargers in public charging stations than among the charge points at home 
or work.  

With these charging data, we first calculate the average number of charging events per day per EV, for home, 
workplace, and public charging separately. This is then multiplied with the number of EVs that travel into 
each region for the same purpose, to obtain the number of charging events that occur in each region in 
different charging locations per day. Lastly, we bootstrap the charging events in each day from the empirical 
data, and calculate the hourly EV charging load profile. 

The spatial allocation of EV charging demand is then connected with the network pattern of the distribution 
grid. Each of the regions correspond to several feeder lines. The aggregate capacity threshold of the feeders 
within each region can be compared with the aggregate baseload and EV load, to examine whether the 
addition of EV charging demand violates the capacity constraint. And if overloading takes place in an area, 
we can quantify when it starts, how frequent it happens, and how intense it is. 

 
Table 2 Statistics of charge event duration and energy per charge event in different charging locations, from empirical 

EV charging data 

Value EV Charging Location Mean Standard Deviation 
Charge Event Duration [Hours] Home 3.58 3.00 

Work 3.04 2.70 
Public 0.52 0.52 

Energy Per Charge Event [kWh] Home 7.59 8.27 
Work 7.30 7.28 
Public 12.73 7.95 

 
1 California Code of Regulations, Section 1962.4 Draft, December 2021. “Zero-Emission Vehicle Standards for 
2026 and Subsequent Model Year Passenger Cars and Light-Duty Trucks”. 
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Figure 1 Distribution of charge event start hour in different charging locations, from empirical EV charging data 

3 Results 

3.1 Overload Frequency and Intensity 
We run the model from 2022 to 2045, and simulate the hourly EV charging profile in each area on the 
maximum load day of each month, when overload is most likely to happen. In Fig. 3, the EV charging load 
(red line) is compared with the feeders’ thermal load allowance (blue line) provided in the ICA dataset, which 
is the remaining feeder capacity after excluding baseload in the circuit segments. Overload happens when 
the red line goes above the blue line. We can observe that in 2022 (the top figure), the red line is almost 
always below the blue line, indicating very rare overloading in the areas that we examine. In 2045 (the bottom 
figure), however, in many areas, the EV load grows to exceed the remaining capacity from time to time. The 
extent of overloading can be very diverse across different areas. For example, in Berkeley and Mira Mesa, 
the red line is completely beyond the blue line all the time; While in Mission and Downtown San Diego, the 
EV load remains well below the thermal limits; In places like La Jolla and University City, overload happens 
regularly at certain hours of each day. 



EVS36 International Electric Vehicle Symposium and Exhibition      7 

 

 
Figure 2 Hourly EV charging load profile and remaining feeder capacity, in the peak load day of each month, in 

different areas, in 2022 (top) and 2045 (bottom) 

 

To further quantify the frequency of overload in the distribution system, we calculate the share of the number 
of hours where EV load exceeds remaining feeder capacity within the total number of hours in the days 
simulated each year. As illustrated in Fig. 4, this share indicates how often the distribution network in each 
area is stressed by the growth of EV charging load in each year. A flat line of 0 over all the years represents 
the local distribution network not challenged by overloading at all, as can be seen in Davis, Downtown San 
Diego, Mission, and Mountain View. In some areas (Irvine, La Jolla, University City, and Walnut) we can 
see a relatively mild increase in overload frequency, up to less than 50% of the time, as the EV charging load 
increases over the years. But the year that this increase starts can be varied: Irvine and La Jolla start to have 
overload from 2038, while University City starts to be overloaded from 2033, and Walnut’s overload 
frequency increases from as early as 2025. There are also areas that risk severe overloading in the future – 
Berkeley, Manhattan Beach, and Mira Mesa, where the frequency of overload can reach over 50% of the 
time. Mira Mesa and Berkeley’s distribution networks will be overloaded 100% of the time after 2030 and 
2040 respectively.  
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Figure 3 Overload frequency of the distribution network in each area by year 

We also want to evaluate how intense the future EV charging load contribute to the reduction of capacity 
headroom. The headroom reduction share in each hour is calculated by dividing the remaining feeder capacity 
by the EV charging load. Fig. 5 shows the average headroom reduction share in each area by year, and we 
categorize the 12 regions into mainly residential and mainly commercial areas. The share that EV charging 
demand takes up in the remaining feeder capacity increases as the EV uptake grows over the years. When the 
headroom reduction share goes beyond 1, it means that on average, the EV load level in this area is higher 
than the remaining capacity, which indicates overloading. Among the residential areas, EV charging demand 
in Mira Mesa and Walnut can reach as high as 5 times and 3 times as much as their remaining feeder capacities 
respectively. Mira Mesa’s headroom reduction share exceeds 100% in 2027, and this happens later in Walnut 
in 2030. In the commercial areas, overloading is generally less intense and happens later. EV loads in 
Berkeley and Manhattan Beach exceed 100% of their remaining feeder capacities on 2030 and 2036 
respectively, and reach up to 3 times and 1.5 times as much as their capacity headroom respectively.  

Overloading can also exist in the areas with headroom reduction share below 1, such as University City and 
La Jolla. While the EV loads exceed remaining capacity at certain hours in each day, the relatively lower 
overload frequency and intensity reduces the headroom reduction share on average. Among those areas that 
have no overload until 2045, some of them have a lot more capacity headroom left after integrating EV 
charging demand, such as Downtown San Diego and Mission, both are commercial areas; while others can 
have peak EV loads taking up majority of the remaining capacities, such as Davis, Mountain View, and Irvine, 
all of which are residential areas. 

 
Figure 4 Yearly average feeder capacity headroom reduction share caused by EV charging load, in residential areas 

(left) and commercial areas (right) 
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3.2 Load Patterns 
Temporal patterns of EV load and baseload can influence the overloading conditions in the distribution 
system. In Fig. 6, we show the load patterns in different areas on the peak load day of August 2045. The 
composition of EV load is different between residential and commercial areas, leading to a difference in the 
general pattern of EV charging profiles. In residential areas, majority of the EV charging demand comes from 
home charging, which makes the charging load at night a lot higher than that in the day. Most of the residential 
areas that we examine have only one peak charging load during the night. In commercial areas, the proportion 
of public charging is a lot higher than that in residential areas, which generates another peak in the charging 
load in the middle of the day. Baseload patterns are also affected by the characteristics of the area. In 
residential areas, baseload usually peaks around 18:00; while in commercial areas, baseload peak tends to 
start earlier during the day, usually from around noon. The synergy of baseload and EV load patterns influence 
the time that overloading tends to happen. In residential areas, overload tends to take place at night, such as 
University City and Irvine. In the areas that do not have overloading problems yet, such as Davis and 
Mountain View, nighttime is also when total load gets the closest to feeder capacity threshold. Similar trend 
can be seen in the middle of the day in most of the commercial areas that we examine. 

Despite this general trend of difference between commercial and residential areas discussed above, it is worth 
noting that the extent of overloading in each specific distribution network is far more complex and needs to 
be analyzed case by case. This heterogeneity can be observed in our case studies among the areas within the 
residential or commercial category. When and how much overload takes place in a feeder is not only related 
to people’s energy consumption behaviors, but also largely affected by the amount of capacity headroom left 
when the distribution infrastructure is built, as well as the overall scale of local EV charging load. 

 

 
Figure 5 Breakdown of hourly EV charging load by location, feeder baseload profile, and remaining feeder capacity, in 

residential areas (top) and commercial areas (bottom), on the peak load day of August in 2045  
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4 Conclusion and Discussion 
In this study, we utilize spatial and temporal empirical data from both the grid and the EV side, to investigate 
when the electric distribution system of California will be stressed by the growing EV charging load, and to 
what extent the overloading will develop. We cover the spatial heterogeneity and diversity of building types 
by examining twelve representative areas across the territories of the three major investor-owned utilities in 
California. The simulation of EV charging profile is conducted uniquely with travel demand model and 
empirical EV charging data, with the EV uptake projections reflecting California’s aggressive policies. 

Across the regions that we examine, generally, the distribution networks in residential areas are more 
intensely stressed than commercial areas. As future EV charging demand grows, overload tends to occur 
during the night in residential areas, and during the day in commercial areas. These trends are caused by the 
general difference in load patterns, which is related to the characteristics of an area that influence people’s 
energy consumption habits, travel purposes, and charging behaviors.  

However, our case studies also reveal that the development of overloading in each specific region is more 
diverse than a generalized conclusion. In some areas overloading starts to occur from as early as 2022, while 
in other areas total load remains below capacity threshold until 2045. Three out of the twelve areas that we 
examine have frequent overloading over 50% of the time, starting between 2028 and 2040. Four areas will 
be challenged by intense overloading, where EV charging load can reach up to 500% of the remaining 
capacity headroom. The scale of feeder capacity headroom in each area is determined when the distribution 
network is built, and can fluctuate with real time temperature and voltage conditions. The magnitude of local 
EV charging demand, on the other hand, is influenced by many factors such as travel demand, vehicle 
ownership, charging infrastructure availability, etc. These diversities make the impact of EV charging 
demand on existing distribution system highly varied and need to be analyzed on a case-by-case basis. 

Our next step would be to expand the case studies into a larger scale, in order to cover a wider heterogeneity 
and better understand the time, frequency, and intensity of possible capacity exceedance caused by future EV 
charging load. Another limitation of this study is the simplification of the spatial heterogeneity in the average 
number of charging events per EV per day, and in the electrification rate of light duty vehicles. Additionally, 
projections on the demand side development of the grid – such as rooftop solar generation and energy 
efficiency – could further improve the accuracy of our analysis. 
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