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Executive Summary 

This paper proposes a multi-channel multi-frequency wireless power transfer (MCMF-WPT) system for 

automated guided vehicles (AGVs). In particular, a double-channel double-frequency wireless separately 

excited DC motor is proposed, which can enable AGVs working continuously for delivery in warehouses 

without any timeout for battery charging. Generally, wireless motors using multi-channel transmissions 

require multiple wireless power transmitters or receivers, which will occupy larger space and reduce cost-

effectiveness while leading to less compactness. By using one magnetic coupler only, the proposed MCMF-

WPT system can energize multi-loads flexibly and compactly. Moreover, the proposed system adopts the 

damping filters to successfully suppress the cross-interference between neighboring channels at the receiver 

side, while a high order compensation is configured to achieve full resonances at the transmitter side. In such 

a way, the WPT outputs of different channels can be controlled separately for fitting different operating 

conditions. Finally, both theoretical analysis and computer simulation are provided to verify the feasibility 

of the proposed MCMF-WPT system for a double-channel double-frequency wireless separately excited DC 

motor.  
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1 Introduction 

Wireless power transfer (WPT) is identified as one of the most epoch-making technologies in recent years. 

Based on the mechanism of magnetic resonance coupling [1], the WPT delivers power without wires, thus 

having numerous advantages of great flexibility [2-4], high security [5, 6], and maintenance-free [7, 8] in 

various applications, such as portable electric devices [9, 10], medical implants [11, 12], and electric vehicles 

(EVs) [13-15]. In recent years, automated guided vehicles (AGVs) are widely applied in industries for 
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delivering [16, 17]. However, due to the limited energy capacity of batteries, regular charging is needed by 

taking a long time, thus interrupting the operation of AGVs [18].  

After years of research, WPT schemes were actively explored to power and control electric motors directly 

[19-22]. Therefore, the batteries of AGVs are no longer needed, which allows AGVs to work continuously. 

The concept of wireless motor was first proposed to avoid cable disconnection in harsh environments [23]. 

However, the dual-controller and dual-inverter structure brings high complexity and maintenance needs. 

Similar topologies were also presented in the literature [24-26]. To eliminate the controller on the motor side, 

the self-driving inverter was introduced into the receiver circuit, which realized switching control and power 

transmission simultaneously [27, 28]. Compared with passive components, active switches are still 

vulnerable.  

To eliminate the active power switches at the receiver side, the multi-channel WPT system is used for wireless 

motors. Firstly, a wireless switched reluctance (SR) motor using decoupled coils was revealed [20]. Wherein, 

each phase of the wireless SR motor was powered by an independent WPT channel, while the decoupled 

coils were deployed to prevent interference. However, the decoupling coupler is sensitive to misalignment, 

which limits its application in moving objects like AGVs. By utilizing multiple resonant frequencies, the 

WPT can provide multiple power channels with a single transmitter [29-31], which enables energizing the 

multi-phase loads selectively or simultaneously while offering independently controlled capability. Secondly, 

a wireless separately excited DC motor using time-division multiplexing was studied [32], and its armature 

and field windings were powered alternatively in a short period to realize the individual control, but its output 

power and control precision were sacrificed slightly due to the multiplexing.  

In this paper, the main purpose is to present a multi-channel multi-frequency (MCMF) WPT system for 

Automated Guided Vehicles. Particularly, a double-frequency double-channel wireless separately excited DC 

motor is proposed based on the MCMF-WPT scheme. The armature and field windings can be energized and 

controlled independently by using a single transmitter to fully utilize the speed range.  

2 Multi-channel Multi-frequency WPT system 

The proposed MCMF-WPT scheme provides the ability to energize multiple loads with different input levels, 

by utilizing a single transmitter, a more compact size can be achieved, which shows great potential in the 

direct drive of robotics and EVs. The proposed MCMF-WPT system is depicted in Fig. 1. The inverters 

generate powers composing different frequency components to energize the multi-frequency transmitter 

network. The compensation circuits at both the transmitter side and receiver side are tuned at different 

resonant frequencies for higher efficiency and better selectability. To reduce the eliminate the cross-

interference caused by unrelated channels, damping filters are adopted in each channel. Therefore, by 
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Figure1: Proposed MCMF-WPT system using a single magnetic coupler. 
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regulating the fundamental component of each channel, the output of each load can be controlled 

independently. 

3 Wireless separately excited DC motor using MCMF-WPT 

Based on the MCMF-WPT scheme, a double-channel double-frequency separately excited DC motor is 

investigated, as shown in Fig. 2. A full bridge inverter is utilized to generate power composing two 

fundamental components with different frequencies f1 and f2, respectively. The power is transmitted through 

a shared magnetic coupler, then separate into two channels in the receiver side. Channel 1 is connected to the 

armature winding, and channel 2 is connected to the field winding. Meanwhile, Since only one receiver is 

involved, each channel is connected with one damping filter so as to reduce the cross-interference between 

neighboring channels. To achieve resonant conditions on both channels, dual-frequency compensation 

scheme is adopted as variable capacitors in the transmitter circuit [33]. Thus, the voltage and current of each 

winding can be controlled individually and precisely, providing a wide speed range. 

3.1 Principle of multi-channel power superposition 

The operating frequency of switches S1 and S2 is f1, while that of S3 and S4 is f2 [34]. Fig. 3 shows the 

theoretical waveform of the inverter output voltage. The inverter output voltage is 

AB A Bu u u= −                                   (1) 

where uA and uB can be calculated by using Fourier expansion, n represents the order of harmonics, δd1 and 

δd2 denote the duty ratio of PWM in each channel.  
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For the proposed WPT system, only the fundamental AC component is considered, which can be expressed 

as 
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Figure2: Proposed MCMF-WPT system using a single magnetic coupler. 



EVS36 International Electric Vehicle Symposium and Exhibition      4 

Therefore, the output is the superposition of two power channels in two frequencies of f1 and f2, and the 

amplitude can be controlled using pulse-width modulation (PWM) to separately control the output current 

by changing the duty ratio δd1,δd2. Correspondingly, the output current can be managed individually. When 

the duty ratio is set at 0.5, the fundamental component of inverter output voltage reaches its peak value, and 

the output will be zero when equal to 0 or 1, theoretically. 

3.2 Magnetic Coupler Design 

The magnetic coupler in the WPT system should provide maximum transfer distance and high efficiency. For 

the WPT system using a single coil, both rectangular coil structure and circular coil structure were adopted 

in the previous studies [35, 36]. Compared with the circular coil structure, the rectangle coil structure suffers 

from lower mutual inductance using the same weight and length of wires and the same transfer distance [37]. 

Therefore, a circular coil structure is used for the magnetic coupler in the proposed system. To further 

strengthen the magnetic coupling under the same distance, eight ferrite bars with a size of 60 × 15 × 5 mm 

are laid at the top of the receiver coil and bottom of the transmitter coil. The material of the ferrite bars is 

PC95. Fig. 4 shows the detailed geometric dimension of the magnetic coupler.  
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Figure3: Theoretical waveform of inverter output voltage 

Ø150mm

nt = nr = 15

Ø225mm

ferrite bar

transmitter

receiver

80mm

60mm

15mm

5mm

37.5mm

 

Figure4: Geometric dimension of transmitter and receiver coils 
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3.3 System Characteristics and Analysis 

The equivalent circuit of the proposed wireless separately excited DC motor is shown in Fig. 5, where the 

field winding and armature winding are simplified to resistors. us is the power source, Lf denote the filter 

inductance, XCft and XCt represent the variable filter capacitance and matched capacitance of the transmitter 

under two operating frequencies; Cr, Cfr represent the matched capacitance and filter capacitance of the 

receiver; Lt, Ls are the transmitter and receiver coil inductances; Lrk, Crk (k = 1, 2) compose two band-stop 

filters which the stopband centered at f1 and f2. The impedance of the band-stop filters can be calculated as 
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Zrc1, Zrc2 are the compensation components for resonance, the type is defined by the impedance of other 

components at the resonant frequency.  

The compensation circuit adopts a T-type structure [28] on both the transmitter and receiver sides. Since the 

two power channels share the same route before the damping filters, the values of components are tuned to 

provide desired outputs. The receiver circuit is tuned to form a symmetrical T-type structure for channel 2, 

to provide a constant voltage / current output, which is defined by the transmitter circuit. The relation is 

shown in equation (5). When working at frequency f2, Zp2 is capacitive, Zrc2 should be inductive, which can 

be represented by an inductor L2.  
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The input impedance of the receiver circuit is resistive at frequency f2 
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The equivalent impedance of channel 2 at the transmitter circuit is  
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For channel 1, when working at frequency f1, the parameters are tuned as 
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Figure5: Equivalent circuit of the proposed MCMF-WPT system in different channels. (a) Channel 1. (b) Channel 2. 
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The input impedance is not resistive due to the unsymmetrical T-type structure, shown as 
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Therefore, the equivalent impedance of channel 1 at the transmitter circuit is 
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which is the sum of a resistive component and an inductive component. However, the inductive component 

is unrelated to the load, which makes the resonant status unchanged with a variable load, such as an electric 

motor. The transmitter circuit provides two resonant frequencies f1 and f2 in a T-type LCC compensation 

structure. The equivalent capacitances of XCft, XCt and the parameters of LC components in the equivalent 

capacitors can be calculated using the relations 
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As shown in [30], the current in the transmitter coil is  
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which keeps a constant value under a constant voltage source. Therefore, the output voltage of channel 1 and 

output current of channel 2 are constant against variation of load [38].  

4 Verification and Results 

To verify the feasibility of the proposed MCMF-WPT system, a finite element analysis (FEA) model was 

built for evaluation, where the geometric dimensions of the magnetic coupler are presented in detail in Fig. 

4. A circuit model was built using the parameters shown in Table I. Wherein, the operating frequencies are 

selected as 120 kHz and 180 kHz. The magnetic field distribution with a constant current input of 10 A and 

a 25 Ω resistive load on both channels is depicted in Fig. 6, with the same circuit parameters in Table 1. Fig. 

7 shows the input impedance characteristics with different load values. The results show that the input 

impedance angle remains zero against the variation of load.  

To better identify and evaluate the regulation performance of outputs, the wireless motor was represented by 

using resistive loads of 25 Ω, and the DC voltage source is set at 80 V. Fig. 8 (a) and (b) shows the load 

voltage when decreasing the output in only one channel, while keeping maximum output in another channel. 

The results show that the output can be controlled flexibly by changing the duty ratio of the inverter output, 

while that of the non-targeted channel keeps nearly unaffected. Fig. 8 (c) and (d) depict the AC current 
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variation of the controlled channel, which well verifies that the cross-coupling interference can be effectively 

suppressed and the controllability of the proposed system. 

To assess the practical performance of the proposed motor, a circuit model is built according to Fig. 2. The 

armature winding is powered by the 120-kHz channel, while that of the field winding is connected to the 

180-kHz channel. The rated input voltage of the wireless motor is 240 V, and the rated speed is 1750 rpm. 

Fig. 9 shows the motor speeds with respect to different duty ratios of armature and field winding under a 

constant load torque of 1 N.m. When the duty ratio of the 120-kHz channel is 0.5 and 0.1 for the other channel, 

the motor speed can reach its rated speed with an output torque of 1 N.m. Lowering the armature voltage can 

reduce the motor speed, while a higher speed can be obtained by reducing the field winding current through 

the flux-weakening control. Hence, the proposed wireless motor system has a wide speed range.  

5 Conclusion 

This paper proposes a multi-channel multi-frequency WPT system for AGVs, particularly, a double-channel 

double-frequency wireless separately excited DC motor is proposed. The proposed motor can be powered 

and driven by using WPT directly, which can enable AGVs working continuously in warehouses without the 

need for any battery modules. Using only one magnetic coupler, the size of the system can be reduced. The 

proposed system utilized high-order compensation to achieve resonant conditions under different frequencies, 

and damping filters to eliminate interference between the two channels. Using the proposed scheme, the two 

power channels can achieve independent control, therefore, the speed of the proposed motor has a wide speed 
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range, and the speed can be regulated conveniently by changing the duty ratio. The feasibility of the proposed 

motor is verified by both theoretical analysis and computer simulation.  
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Table 1: Simulation parameters 

Items Value 

Transmitter coil inductance (Lt) 81.67 μH 

Operating frequencies (f1, f2) 120 kHz, 180 kHz 

Transmitter filter inductance (Lf) 20 μH 

Variable capacitor XCft parameters  

(Lftp, Cftp, Cft) 

3.17 μH, 355.36 nF, 61.08 nF 

Variable capacitor XCt parameters 

(Ltp, Ctp, Ct) 

9.40 μH, 119.70 nF, 19.40 nF 

Receiver coil inductance (Lr) 81.67 μH 

Receiver matched capacitance (Cr) 21.54 nF 

Receiver filter capacitance (Lfr) 17.23 nF 

Channel 1 damping filter parameters 

(Lr1, Cr1, C1) 

30 μH, 26.06 nF, 32.57 nF 

Channel 2 damping filter parameters 

(Lr2, Cr2, L2) 

30 μH, 58.63 nF, 69.37 μH 
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