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Executive Summary 

Harbor craft and marine vessels are a transportation segment that has historically been difficult to 

decarbonize. To advance the commercialization of zero emission harbor craft, the California Energy 

Commision funded the Hydrogen Zero Emission Tug (HyZET) project to develop a design for a liquid 

hydrogen (LH2) fuel cell tugboat and to analyze its commercial viability. This project also investigated the 

technical, safety, and regulatory requirements that this vessel must meet and the feasibility of LH2 bunkering. 

This paper outlines the results of this project and the technical specifications for the tugboat.  
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1 Introduction 

The San Pedro Port Complex, which includes the Port of Los Angeles (POLA) and Port of Long Beach 

(POLB) is one of the busiest port complexes in the United States, handling  40% of America’s containerized 

imports and 30% of America’s exports [1]. Large numbers of onroad and offroad vehicles, including Class 8 

trucks, cargo handling equipment, commercial harbor craft, and container ships, operate at this port complex. 

Unfortunately, these vehicles produce a large amount of emissions. The San Pedro Port Complex produces 

100 tons of smog per day, as well as large amounts of particulate matter (PM), nitrogen oxides (NOx), and 

greenhouse gas (GHG) emissions. The San Pedro Port Complex is the single largest source of air pollution 

in the Southern California region, producing 100 tons of smog and NOx per day [2]. As a result, many of the 

areas surrounding the port complex have elevated levels of air pollution. This has public health ramifications 

for these communities as it has caused increased levels of asthama, respiratory illness, and cancer [3]. 

The State of California has responded to this problem in a variety of ways. One method has been to encourage 

industry to transition to zero emission transportation technology. The State of California has provided funding 

for demonstration projects and incentive programs to support the adoption of zero emission medium- and 

heavy-duty vehicles, like battery electric or fuel cell buses and trucks. These technologies have experienced 

rapid technological development and some fleets have begun to adopt these vehicles. However, some 

transportation segments have proven harder to transition to zero emission because of high energy 

requirements, rigorous duty cycles, unpredictable operating schedules, or design constraints on the vehicle. 

The harbor craft sector is an example of a transportation segment that is difficult to transition to zero emission 

technology.  

Transitioning the harbor craft sector to zero emission is important because marine vessels contribute to 

climate change and poor air quality. According to the International Maritime Organization, marine vessels 

are responsible for nearly 3% of global GHG emissions [4]. In addition, since harbor craft typically consume 

diesel, they are responsible for PM and NOx emissions. The State of California aims to mitigate these 
emissions by developing and deploying zero emission harbor craft. Since, this sector is still in early stages 
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of commercialization, the State of California has focused primarily on vessels like tugboats and ferries. Since 

these vessels have predictable duty cycles and return to base at the end of each day, they were deemed to be 

promising “first movers” for transitioning to zero emission. To promote commercialization of this technology, 

the California Energy Commission funded the Hydrogen Zero Emission Tug (HyZET) project. 

2 Project Background 

The HyZET project is being carried out by a consortium that is led by CALSTART. ABB Marine & Ports, 

Ballard Power Industries, Chart Industries Inc., Crowley Engineering Services, DNV, the Port of Los 

Angeles, and the Southern California Gas Company. The HyZET consortium consists of leading maritime 

stakeholders with extensive experience in electric propulsion system integration, fuel cell energy solution 

production, feasibility analysis and technology qualification, independent safety and quality assurance, vessel 

operation and design, LH2 system integration, and upstream hydrogen production. The HyZET consortium 

was formed in the summer of 2020 to seek funding opportunities to develop a zero emission. The California 

Energy Commission awarded funding for the HyZET project under solicitation GFO-20-604.  

The HyZET project is intended to produce an actionable design for a hydrogen fuel cell tugboat that is 

designed to operate in the Port of Los Angeles; evaluate the costs of constructing, operating, and maintaining 

the tugboat; identify technology and regulatory barriers to hydrogen fuel cells in marine applications; and 

develop supporting plans for refueling infrastructure. If the design is deemed to be viable, the consortium 

can collaborate to seek funding to build the vessel. 

3 Vessel Design 

The fuel cell tugboat was designed to provide escort and docking service in the Port of Los Angeles, as well 

as offshore operations. Crowley’s HERCULES diesel-powered tugboat, which has a bollard pull of about 90 

tons, was used as the design basis for the vessel. The vessel was designed in several stages. The first stage 

involved collecting data to understand the duty cycle and energy requirements of the HERCULES tugboat. 

This data was then used to size the propulsion system, the fuel cell system, the battery systems, and the LH2 

storage system. Based on these system requirements, a general arrangement for the vessel was then 

developed. This general arrangement then served as the basis for estimating the cost of the vessel. 

3.1 Tugboat Duty Cycle 

The HyZET team analyzed data from Crowley’s HERCULES tugboat to understand its duty cycle. This data 

was collected using the BareFleet monitoring program developed by Reygar LTD Marine Systems. This 

monitoring program continuously records potentially dozens of different data points at 10 second intervals, 

allowing in depth review of the vessel and its equipment. For this project, data on engine loading, fuel 

consumption and speed over ground was reviewed to establish the load profiles. The week of September 1 

through September 7, 2021 was chosen as a representative week for this phase, with additional trips analyzed 

for variations in vessel operations. The team examined the loading of the individual main engines. Engine 

loads were then broken into 5% increments of total engine power to obtain a distribution of loading over each 

trip. 

This analysis indicates that the vast majority of the time the vessel is underway, power use is less than 50% 

of the maximum engine loading. Of the eight trips analyzed, four trips had engine loads of 50% or less at 

least 95% of the time underway, while all but one trip had 99% of the time underway with power loads of 

less than 75%. Of the eight trips, six fell into a pretty common load pattern. One trip had a significant amount 

of power loading in between 65% and 75%, while another had a larger amount of time with loading from 

75% to 100%. These results indicates that a diesel powered harbor tug has a serious disadvantage because 

large horsepower engines are required to provide that very few minutes of high power required for a job, 

while a great portion of the time, the tug is operating at 50% power or less. Based on this analysis, designing 

the power system to be capable of providing maximum power without utilizing an energy storage system 

would seriously over size the main propulsion power plant. 

The HyZET team also analyzed fuel consumption. The HERCULES uses approximately 3,000 gallons of 

marine diesel oil per week, which equates to 2,800 kg of hydrogen. Since the proposed fuel cell tugboat is 
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slightly larger than the HERCULES, it requires more fuel. As a result, a margin of 25% was added to the 

2,800 kg of hydrogen. Based on this methodology, the tugboat was projected to require 3,500 kg of hydrogen 

per week. Since the HERCULES normally bunkers once per week, the LH2 storage tank must be able to hold 

at least 3,500 kg of hydrogen. 

3.2 System Sizing 

To be deployed, the tugboat will need to pass a full 90 Tons Bollard pull test. The HyZET team specified a 

Schottel L-Drive (SRP-490LE) system, with a maximum power of 2,450 kW per engine. Since there will be 

one engine on the port-side and one engine on the starboard-side of the vessel, this equates to 4,900 kW. In 

addition, the vessel has a 200 kW hotel load. As a result, the maximum power draw for the tugboat is 5,100 

kW. The HyZET team analyzed three operating modes to size the powerplant for the vessel: 

• Bollard Pull testing: Based on a duty-cycle of 5,100 kW load for 15 consecutive minutes 

• Maximum profile: Based on a duty-cycle where the vessel consumes 11 MWh per day. 95% of daily 

duty cycles consume 11 MWh or less 

• Average profile: Based on a duty-cycle where the vessel consumes 5.1 MWh in a day. Half of daily 

duty-cycles consume 5.1 MWh or less 

The duty-cycles in the Maximum Profile and the Average Profile are displayed in Figure 1 and Figure 2. 

 

 

Figure 1: Maximum Profile 
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Figure 2: Average Profile 

The suggested philosophy of operation for the tugboat is to employ both fuel cells and battery storage. The 

fuel cell is used as a baseload, supplying constant power. The battery storage system is used for peak shifting, 

providing energy at peak demand and charging when the tugboat’s load is less than the power generated by 

the fuel cells. Additional considerations need to be taken into account when sizing the battery storage system. 

The battery should act as a redundant source of power and energy should the fuel cells stop working and be 

able to power the vessel for a certain duration. Sufficient energy and power capacity are required to power 

the vessel back to shore in the event of an emergency. This approach was used to size the major components 

of the vessel. 

3.2.1 Fuel Cell and Battery Storage System Sizing 

The fuel cell system was sized to provide a baseload for the vessel. The required baseload is based on the 

average power demand under both the Average Profile and the Maximum Profile. The Ballard Power 

FCWaveTM system was selected for the vessel design. Twelve FCWaveTM modules are required to provide 

the 1,375 kW baseload required by the Average Profile. The Maximum Profile has a 1,615 kW baseload 

requirement which can also be served using twelve FCWaveTM modules.  

The remaining power demand is served by the battery storage system. The HyZET team started by selecting 

a battery chemistry. There are three types of battery chemistries in the transportation market today. These 

battery chemistries have different properties and are suited for different use cases. The battery chemistries 

and their properties are displayed in Table 1. 

Table 1: Battery Chemistry Properties 

Battery Chemistry Output Power Energy Density Cost 

Lithium-iron phosphate Low High Low 

Lithium nickel manganese cobalt Medium Medium Medium 

Lithium titanate oxide High Low High 

The lithium nickel manganese cobalt chemistry was selected because it has a good ratio between power and 

energy. Furthermore, lithium nickel manganese cobalt is the primary chemistry used in the marine sector and 

the supply chain for this battery type in the marine sector is established. 

The primary purpose of the battery storage system is to engage in peak shaving. The battery storage system 

is designed to provide supplemental power when power demand exceeds the average load and then recharge 

from the fuel cells when power demand falls below the average load. This allows the fuel cells to operate in 

their most efficient range. The ORCA E2250V1 from Corvus Energy was selected for the vessel design. The 

Corvus Energy sizing tool was used to determine the optimal size of the battery storage system. The tool 
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determined that the vessel requires 1,740 kWh of batteries. These batteries can provide up to 5,220 kW for 

13 minutes or 3,480 kW for 20 minutes. 

Figure 3 and Figure 4 illustrate how the fuel cell and battery storage systems work in conjunction to meet the 

power demands of the tugboat for both the Maximum and Average profiles. 

 

Figure 3: Fuel Cell and Battery Storage System Operation under the Maximum Profile 

 

Figure 4: Fuel Cell and Battery Storage System Operation under the Average Profile 

3.2.2 Liquid Hydrogen Storage Tanks 

The HyZET team determined that the tugboat will require 3,500 kg of hydrogen per week. The HERCULES 

tugboat is bunkered once per week. To maintain this operational schedule for bunkering, the vessel needs to 

be able to store at least 3,500 kg of hydrogen. Since hydrogen is not volumetrically dense and the vessel is 

space constrained, it is not feasible to store gaseous hydrogen on the tugboat at this scale. As a result, the 

vessel was designed to bunker with LH2. Although the vessel requires 3,500 kg of hydrogen per week, the 

LH2 storage tanks cannot be completely emptied without being recommissioned. As a result, the LH2 storage 

tanks will need to have additional storage capacity beyond the 3,500 kg that will be consumed each week. To 
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meet these needs, the tugboat design calls for two 2,000 kg LH2 tanks. The LH2 tanks manufactured by Chart 

Industries were selected for the vessel design. 

3.3 General Arranagement 

The HyZET team developed a general arrangement for the vessel. The design process starts with the Program 

Requirements and then proceeds to see how those can be achieved. For the general lay-out, the HyZET aimed 

to emulate the current vessels that work in the LA harbor as well as the designs currently under development 

for updating Crowley’s harbor tug fleet. All the new designs currently under consideration employ some 

amount of battery storage to supplement the main propulsion, with the current trend to using several 

generators in a diesel electric configuration. As a result, integrating the battery storage system into the design 

is relatively routine. 

A key design challenge is integrating the LH2 storage tanks. The LH2 tanks are required to be certain distance 

from the shell of the vessels, as well as locating the vents of the system away from intakes and openings to 

other parts of the vessel, particularly accommodations spaces. As a result, the tugboat had to be designed to 

have a length of 105-feet, which is slightly larger than the HERCULES. However, this length still matches 

well with the current Crowley fleet in the harbor, which run from a length of 82-feet to 105-feet. The current 

length of the design should provide sufficient space to allow relevant regulations and guidelines to be met. A 

Hazardous Zone Plan was developed to determine where areas of potential gas release could affect operations 

of the vessel. 

Another aspect of this particular design and electrical propulsion in general is the number of ancillary 

equipment and control cabinets that are required to house the DC Grid and supporting controls and 

transformers. A side effect of fitting the twin LH2 tanks into the hull was that it required a slightly deeper 

hull than typical tugs of this size and power, which provided the opportunity for a two level 

“Machinery/Control” space. Not only did this provide additional space to allow generous space around 

equipment, but allowed vertical separation for the “wet”machinery (pumps and liquid manifolds) and the 

“dry” machinery (all the electrical components). This also allowed for the batteries to be located low in the 

vessel. 

Despite these unique design requirements, the HyZET team found that the construction of a hydrogen 

powered harbor tug appears to be viable based on available technology. The proposed propulsion system fits 

within a dimensional envelope that is similar to the existing tugs that operate within the harbor. The power 

plant provides sufficient energy to obtain the desired bollard pull of 90 short for a reasonable amount of time. 

The design and power that this design can project works well within the framework of the assist tugs currently 

deployed in POLA and POLB. The tug also fits within the framework of the future fleet Crowley and other 

companies are looking to field – a high powered Zero Emission tug that works no differently than the existing 

fleet. 

While designed to be a harbor craft specific to the operational requirements of the Port of LA and Long 

Beach, the vessel has sufficient fuel capacity to transit between ports and operate in different locations. 

Depending on the specific operational requirements of a particular port, the bunkering intervals may need to 

be adjusted to maintain the proper levels of LH2 in the tanks. The vessel’s size and bollard pull make it 

suitable for operations in more open areas, such as the North Puget Sound. 

The general arrangement of the HyZET vessel is displayed in Figure 5. 
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Figure 5: General Arranagement for the HyZET Vessel 

3.4 Vessel Costs 

The HyZET consortium conducted an economic analysis to understand the feasibility of building the vessel. 

To conduct this economic analysis, Crowley requested a price estimate from a local shipyard for building the 

vessel without the major equipment. Then pricing for the major equipment (fuel cell, batteries, LH2 tank) 

was added to this figure. Pricing for the major equipment was obtained from the members of the consortium 

and vendors that Crowley has previously worked with. Based on this method, the cost to build the vessel is 

expected to be $41.8 million, if it was built in 2022. A breakdown of these costs is included in Table 2. 

Table 2: Approximate Vessel Cost 

Item Total Cost 

Hull $12,500,000 

Electronics $300,000 

LH2 Tanks $8,965,800 

ABB System (including fuel cells, batteries, DC drive units, transformers, AC 

switchboards, motors & thrusters, uninterruptible power supply, pilot 

automation systems, system integration & project management services) 

$16,930,000 

Capstan/Windlass $148,000 

Anchor/Chain $15,000 

Hawser Winch $867,500 

Line $10,000 

Engineering $1,750,000 

Class Costs $350,000 

Current Cost (2022) $41,836,300 

Cost for 2023 Build $46,019,930 

Cost for 2024 Build $50,621,923 

 

Inflation is expected to increase the price of the vessel over time. Assuming a 10% inflation rate, the cost to 

build the vessel in 2023 is projected to be approximately $46 million and the cost to build the vessel in 2024 
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is projected to be approximately $50.6 million. A comparable diesel-powered tugboat costs approximately 

$17 million. 

 

It is important to note that this is the projected cost for the first vessel. This distinction is important because 

the first vessel in a novel design will require additional hours for engineering and design work. Furthermore, 

more time and resources are used to obtain regulatory approval. These are sunk costs that are required to 

build the first vessel. As more vessels of the same class are built, fewer hours will be required for engineering. 

In addition, the systems that are deployed on the vessel are new technologies, and their prices can decrease 

as they benefit from economies of scale. The main systems that can benefit from economies of scale include 

batteries, fuel cells, and LH2 storage tanks.  

 

The impact of economies of scale for the fuel cells and the LH2 storage tanks were modeled using a 

methodology borrowed from a study conducted by Elenora Ruffini and Max Wei [5]. This study used learning 

rates to model how price changes in response to increases in production volume. A learning rate is expressed 

as a percentage. It represents the percent decrease in the price of a good that occurs when production volume 

doubles. This analysis was used to provide a low estimate and a high estimate for cost reductions. The fuel 

cell was found to have a learning rate of 11% for the low estimate and 39% learning rate for the high estimate 

(representing a scenario where fuel cells have the same learning rate as batteries) [6]. A price floor for fuel 

cells was also set, which assumed that the price of fuel cells would not decrease by more than 50%. Based 

on data from the manufacturer, LH2 tanks were found to have a learning rate of 5.5%. This methodology was 

used to project the price based on different production volumes.  

 

Based on this analysis, the price for subsequent vessels has been calculated. Based on this analysis, the cost 

reductions for the for the second vessel is displayed in Table 3. 

Table 3: Estimated Price Reductions for Second Vessel 

Item Low Estimate High Estimate 

Engineering $5.00 M $7.00 M 

Batteries $0.00 M $0.13 M 

Fuel Cells $0.66 M $2.34 M 

LH2 Tanks $0.90 M $0.90 M 

Total Cost Reduction $6.56 M $10.37 M 

 

The cost of the vessel in 2022 is estimated at $41.84 M. Based on these projections, the cost of the second 

vessel would be between $31.47 M and $35.28 M. These figures are based on current prices and do not take 

inflation into account. 

The cost reductions for a twentieth vessel were also calculated. The results are displayed in Table 4. 

Table 4: Estimated Price Reductions for Twentieth Vessel 

Item Low Estimate High Estimate 

Engineering $5.00 M $7.00 M 

Batteries $0.00 M $0.13 M 

Fuel Cells $2.37 M $3.00 

LH2 Tanks $1.70 M $1.70 M 

Total Cost Reduction $9.07 M $11.83 M 

Based on these projections, the cost of the twentieth vessel would be between $30.01 M and $32.77 M. These 

figures are based on current prices and do not take inflation into account. 

4 Regulatory Environment 

To obtain approval for operation, a tug must follow local and international requirements as required by the 

flag state and local port authority. These requirements cover the design, construction, and operation of the 

tugboat. It is important to note that hydrogen is a relatively new type of fuel in the marine sector. As a result, 
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many of the existing regulations were not developed with LH2 in mind. As a result, it remains unclear how 

some of the existing regulations will be enforced for a LH2 powered vessel. This section outlines the 

regulations that are most applicable to the HyZET vessel. This section is not intended to be an exhaustive list 

of regulations. 

The US Coast Guard is the main regulatory body for vessels sailing in the United States and has jurisdiction 

over navigable waters of the United States. Title 46 of the Code of Federal Regulations (CFR 46) is the main 

regulation for American-flagged vessels. The most relevant portion of CFR 46 is Subchapter M, which is 

applicable to all towing vessels. Subchapter M is used by the USCG as a reference during the verification 

and approval of tugs. The requirements from the subchapter will cover a wide range of topics, from fire safety 

to management systems and machinery and electrical installations. If the requirements of Subchapter M are 

met, a Certificate of Inspection is awarded, which a US Coast Guard authorization to operate the vessel. CFR 

46 does not address the use of hydrogen as fuel nor fuel cells. However, Subchapter M allows for novel 

designs to follow an alternative design process to demonstrate that an equivalent level of safety is achieved. 

As a result, the HyZET vessel will need to use the alternative design process to meet the requirements of 

Subchapter M and to pursue its Certificate of Inspection. 

The HyZET vessel will also be subject to International Maritime Organization (IMO) regulations. The IMO 

is the United Nations agency that is responsible for governing shipping and has developed many regulations 

and guidelines for the shipping industry. While there are many IMO publications applicable for a 

conventional tug, there are several regulations that are most applicable to this vessel. These include the 

International Convention for the Safety of Life at Sea (SOLAS), the International Code of Safety for Ships 

Using Gases or Other Low-Flashpoint Fuels (IGF Code), and several other guidelines. SOLAS defines 

internationally adopted minimum requirements for the construction, equipment, and operation of ships 

whether engaging in international trade or when required by the flag for the domestic fleet. The convention 

has as its main focus the safety of the vessel and those on board. Similar to CFR 46, there are currently no 

prescriptive requirements for the use of fuel cells for powering the vessel, but SOLAS provides an 

“Alternative design and arrangements” process that the HyZET vessel can use to pursue approval. 

The IGF Code is the main international code for SOLAS vessels using gaseous or low-flashpoint fuels. 

Currently, the code only contains prescriptive requirements for LNG. All other gaseous or low-flashpoint 

fuelled vessels would have to follow an alternative design process to prove that their fuel maintains an 

equivalent level of safety and meets the functional requirements of the code. The code contains function-

based requirements with the objective of restricting, containing, and venting fuel leakages. The IGF Code 

also describes considerations for positioning of tanks and separation from other compartments, arrangement 

of machinery spaces, positioning of piping and protection against leakage, and location and arrangement of 

the bunkering station. Other safety measures addressed in the code are leakage detections, shutdowns, fire 

detection, and firefighting. The IGF code is now in the process of being updated to include specific 

requirements for fuel cells. 

The fuel cell and battery storage system also have unique safety considerations. Many of these safety 

considerations can be mitigated through the design of the vessel. There are some guidelines and standards 

that seek to address this. MSC.1/Circ.1647 addresses safety concerns related to the fuel cells. This set of 

guidelines applies to vessels using gaseous and low-flashpoint fuels and shall be used together with the IGF 

Code, not replacing it. ASTM F3353-19 addresses safety concerns related to batteries. This standard contains 

requirements for onboard arrangement, testing of cells, operation environment, fire safety, design of the 

system, and studies/assessments to be done for the system. 

5 Liquid Hydrogen Supply and Bunkering 

The HyZET vessel will require large amounts of hydrogen to operate. This is especially true if multiple fuel 

cell tugboats are deployed in the future and if other types of harbor craft transition to fuel cell technology. As 

a result, a LH2 supply chain will need to be established to serve the HyZET vessel and other LH2-powered 

marine vessels. Furthermore, a bunkering solution needs to be developed to transfer LH2 to the vessel. This 

section will discuss options for supplying LH2 and LH2 bunkering technology. 
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5.1 Liquid Hydrogen Supply 

Hydrogen is expected to be supplied to POLA via delivery truck. Hydrogen can be delivered as a liquid. After 

the hydrogen is produced, it must be converted into LH2 through a process called liquefaction. Gaseous 

hydrogen must be cooled to -253°C to become a cryogenic liquid. The liquefaction process cools hydrogen 

by exposing it to other cold materials. Many producers use liquid nitrogen or other cryogenic liquids to 

precool the hydrogen. The liquefaction process is then completed by exposing the hydrogen to cooled helium. 

It is important to note that the liquefaction process consumes a large amount of energy, which adds to the 

cost of the hydrogen production process. The LH2 is then pumped onto a truck with a LH2 tank. A typical 

LH2 tanker truck can hold more than 4,000 kg of LH2. The truck is then driven to the end user, where the 

hydrogen is offloaded. The hydrogen can be offloaded using a cryopump. Alternatively, if the LH2 tanker 

has a vaporizer, the hydrogen can be transferred using differential pressure. Under this method, the vaporizer 

is used to gasify some of the LH2. The vaporized hydrogen in the tanker truck will create pressure in the 

tank. If this pressure exceeds that of the storage tank on the vessel, the pressure differential will push the LH2 

out of the truck and onto the vessel. 

The HyZET team determined that fueling the tugboat via truck is the most cost effective method. Since there 

would only be one vessel deployed at the start, demand for hydrogen will be relatively low. As a result, there 

is not enough hydrogen demand to justify building a bunkering station. The tugboat can also be fueled with 

a single LH2 tanker truck, which simplifies logistics. Space at POLA is limited and employing truck-to-ship 

bunkering eliminates the need for permanent equipment. Furthermore, there are multiple companies that can 

supply LH2 to POLA. 

5.2 Liquid Hydrogen Bunkering 

A LH2 bunkering system will need to be developed to facilitate bunkering for the HyZET vessel. Although 

there is not an off-the-shelf bunkering product, there are some solutions that are being developed. LH2 

bunkering borrows many principles from liquid natural gas (LNG) bunkering.   

5.2.1 Liquid Natural Gas Bunkering 

LNG is comparable to hydrogen because it is also a cryogenic liquid. LNG bunkering typically involves 

connecting a storage tank that holds LNG to a vessel with a flexible hose. A connector on the flexible hose 

is used to attach to the vessel’s bunkering station. Then the hose is purged using nitrogen to remove any 

contaminants. A cryopump is then used to transfer the LNG through the hose to the vessel. Once on the 

vessel, the LNG travels through double-walled piping until it reaches the onboard storage tank. The hose is 

then disconnected and the vessel can resume operations. 

There are several models for conducting LNG bunkering. One method is truck-to-ship bunkering. Under this 

method, a LNG tanker truck parks on the dock next to the vessel and connects using a flexible hose. The 

bunkering is then facilitated with a cryopump that is located either onboard the tanker truck or on the dock. 

This method is typically used when demand for LNG is low and there are only a few vessels that require 

LNG. This method is beneficial because it does not require any permanent infrastructure, meaning that 

required capital investment is minimal. However, it does have some drawbacks. Due to the fixed costs of 

delivering LNG by truck, this method does not scale well when demand increases. Furthermore, this method 

requires the vessel and the truck to be at the port at the same time, which can complicate logistics.  

Another method is shore-to-ship bunkering, in which a LNG bunkering station is used to fuel the vessel. 

Shore-to-ship bunkering is typically used in cases where there is higher demand for LNG at the port. Under 

this method, a permanent bunkering station is built on the dock. This station will typically contain a LNG 

storage tank. The LNG storage tank is usually attached to a flexible hose, bunkering tower, or a loading arm 

that is used to connect to the vessel’s bunkering station. A pump is then used to transfer the LNG. This method 

is advantageous because the station’s storage tank supplies the vessel meaning that the tanker truck does not 

need to be present during fueling. This helps to simply logistics. However, this approach requires capital 

investment and physical space on the dock. This can be challenging if the port is space-constrained. 

The last method is ship-to-ship bunkering. This method is typically used when there is high demand for LNG 

at the port. Under this method, there is a fueling ship that contains a LNG storage tank. The fueling ship 
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approaches the vessel and connects using a flexible hose. A hose saddle is typically used to prevent the hose 

from sagging excessively into the gap between the two ships. A pump is typically used to transfer the LNG. 

This method is advantageous because it allows vessels to be bunkered at their own dock, which minimizes 

the amount of downtime during the bunkering process. 

LNG bunkering has some safety ramifications. One major concern is release of fuel into the environment. 

Since LNG is a cryogenic fluid, exposure to LNG can cause cold burns to personnel. In addition, releasead 

LNG can vaporize creating a risk of fire and explosive environment. Natural gas is also a greenhouse gas, 

meaning that any releases would contribute to climate change. To prevent these risks, drip trays are used to 

collect any LNG that leaks. In addition, emergency release couplings are used on the bunkering hose. These 

couplings are designed to disconnect if the vessel drifts away from the dock while still attached to the 

bunkering hose. These couplings are dry disconnects which are designed to minimize or completely prevent 

release of LNG during the disconnection process.  

5.2.2 Liquid Hydrogen Bunkering 

LH2 bunkering is similar to LNG bunkering. LH2 and LNG have a similar bunkering process and face similar 

safety concerns.  However, while LNG has a boiling point of -162°C, LH2’s boiling point is at -253°C. LH2 

is a colder cryogenic liquid and this property introduces additional safety concerns. However, these concerns 

can be mitigated by modifying bunkering operations or equipment. 

To accommodate LH2, the purging process needs to be modified. In LNG bunkering, the bunkering hose is 

purged using nitrogen. However, LH2’s boiling point is lower than both nitrogen’s boiling point and freezing 

point. If the bunkering hose is purged with nitrogen and then LH2 is transferred through it, the LH2 could 

caue the nitrogen to liquefy or even freeze. This would contaminate the LH2 which can eventually cause 

damage to the fuel cell. To mitigate this risk, the bunkering hose needs to be purged with a different gas. 

Helium would be a good candidate for this because it’s boiling point is even lower than hydrogen’s. 

Alternatively, hydrogen boil off (in gaseous form) can be used in the purging process. 

Another safety issue concerns the bunkering hose. Since LH2 is a colder cryogenic liquid, it is important to 

ensure that the bunkering hose is insulated. If the hose is not insulated, heat ingress will cause the LH2 to 

boil off at a greater rate. The hose can be insulated by using a double-walled hose. However, even with this 

insulation, there are weak points on the hose at the couplings and the emergency release couplings where 

thermal infiltration can occur. Current couplings and emergency release couplings are designed for use with 

LNG. However, if these same couplings are used with LH2, there will not be sufficient insulation. This is 

problematic because LH2 is so cold that it can dramatically decrease the temperature of the air near the 

coupling. This can cause oxygen in the atmosphere to liquefy and form droplets of liquid oxygen. This creates 

a serious fire hazard. Furthermore, the cold temperatures can cause moisture in the atmosphere to condense 

or even freeze. This creates the potential for nozzle freeze, which can impede the disconnection process. This 

is especially problematic if it occurs on the emergency release coupling. To mitigate this problem, insulated 

couplings need to be deployed. There are coupling manufacturers that have developed vacuum-insulated LH2 

couplings to address this issue. These couplings will need to be deployed on LH2 bunkering systems. 

Conclusion 

This study found that a fuel cell powered tugboat can feasibly meet the duty cycle for tugboat operations in 

POLA. This is an important finding because it provides a pathway towards reducing emissions at the San 

Pedro Port Complex. Tugboats are responsible for approximately 19% of PM emissions from the commercial 

harbor craft sector [7]. As a result, transitioning tugboats to zero emission will help to improve air quality 

around POLA and POLB. This study is also applicable to many vessels. As of 2018, there were 55 tugboats 

in the San Pedro Port Complex and 229 tugboats and towing vessels in California [8]. Furthermore, the 

HyZET vessel is suitable for operations in other regions, like the Pacific Northwest. As a result, this study 

will help to enable adoption of zero emission tugboats beyond the San Pedro Port Complex. It is important 

to note that there are very few hydrogen powered vessels in existence. The Sea Change ferry in San Francisco 

and the MF Hydra ferry in Norway are examples of hydrogen-powered vessels that have been built. As a 

result, this project is an early-mover in the hydrogen marine sector. Lessons learned from early-mover 
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projects can help to inform other marine projects and enable the adoption of zero emission technology in 

other commercial harbor craft segments. 
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