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Executive Summary 
Reliable and functional electric vehicle supply equipment (EVSE), which include electric vehicle (EV) 

chargers, are critical components in the global transition to EVs. Several studies have revealed that current 

EVSE reliability metrics, such as uptime, do not reflect the true reliability of EVSEs experienced by 

consumers. In this study, we have developed a novel tool that combines the powerful reconstruction 

capabilities of the Long Short Term Memory (LSTM) autoencoder with the long-term contextual awareness 

of an in-house naïve distribution method to learn the habitual usage patterns of EV chargers and effectively 

identify charging faults that may not be captured by traditional reliability measures. 
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1 Introduction 
The shift from conventional internal combustion engine vehicles to electric vehicles (EVs) hinges on 

both the quantity and quality of EV charging infrastructure. While much research has focused on the 
importance of and challenges to increasing the quantity of EV chargers worldwide, less has been devoted to 
assessing the quality of existing EV chargers. It is crucial to not only add more EV chargers to the map, but 
also ensure that the installed chargers are functional. According to the 2022 U.S. Electric Vehicle 
Experience Public Charging survey by J.D. Power, the growth of public EV charging infrastructure is 
making it easier for EV owners to locate public chargers, but one out of every five respondents were unable 
to charge their EVs at public charging stations [1]. Among those who couldn't charge, 72% cited charger 
malfunction or being out of service as the reason. In response to consumer dissatisfaction with public EV 
charger reliability, jurisdictions including California, Canada, Chile, the European Union, France, the 
Netherlands, New Zealand, the United Kingdom, and the United States are proactively advocating for 
stricter EV charger reliability requirements . In February 2023, the U.S. Department of Transportation and 
the Federal Highway Administration released national standards for federally funded electric vehicle 
chargers that include a minimum average annual uptime requirement of 97% and standardized reporting of 
additional data related to chargers such as location, pricing, and ports, which must be reported on a monthly 
basis for the previous twelve months, thus providing helpful information for jurisdictions designing a 
reliability standard [2]. Simultaneously, the California Energy Commission (CEC) is developing uptime 
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recordkeeping and reporting standards for electric vehicle charging stations that received public funding 
[3]. California is considering requiring a 97% uptime requirement for public chargers for 5 years from the 
time of commissioning, with different requirements for Level 2 and DC fast chargers.  

Within an electrical system, reliability is a measure of how effectively the system transfers electricity 
to the consumer in the amount desired. From the perspective of an EV driver, a reliable charger charges 
their vehicle at an expected rate for the expected duration and accepts the appropriate payment method. 
Whereas from the perspective of a charging service provider, a reliable charger is one that meets the 
minimum uptime requirement of its jurisdiction. Uptime is the measure of the time during which a machine 
is in operation and is the most commonly used charging reliability metric. This metric fails to consider all 
the technological and logistical challenges within the charging ecosystem that ultimately determine the true 
reliability of chargers, as perceived by consumers. Given the stark difference in the definition of reliability 
between charging consumers and providers, it is no surprise that there is a contradiction between the high 
average uptime reported by charging providers and the low user satisfaction scores reported by 
consumers. In 2022, .the California Air Resources Board (CARB) conducted a survey of 11 charging 
service providers, with four respondents claiming a national uptime of 95-98% [6]. This finding directly 
conflicts with a simultaneous survey of EV drivers in California, who reported mixed experiences with 
existing EV chargers, including broken plugs (9%), unexpected shut-off during charging (6%), charging 
station malfunctions (22%), payment issues (18%), and the need to contact customer service (53%) [7]. 
CARB’s findings are consistent with a study by Rempel et al. that evaluated the functionality of all open, 
public Direct Current Fast Charging (DCFC) stations in the Greater Bay Area, revealing that around a 
quarter of surveyed plugs were unreliable or had design failures [7]. 

Rempel et al. revealed six types of charge failures that they encounter in their study: broken 
connectors, non-responsive screens, error message on screens, connection error, payment system failure, 
and charge initiation failure. Table 1 abstracts these six failures to more comprehensively capture the most 
common obstacles consumer encounter while attempting to charge their EVs [8], [9].  

Table 1 Common EV Charger Failures 

 Failure Description 

 
 
 
 
 
 
 

Remotely Observable 

Charger to Vehicle 
Communication Failure 

Malfunction in the EV's charging port or the 
charging station's connector, issue with the 
communication protocol used by the EV and the 
charging station 

Connector/cable Issue Charger cable improperly placed into vehicle 
charging port, poor conductivity due to corrosion 

Electrical Insulation / Safety 
Issue 

Electrical system of charger may be overheating, 
insulation may need to be inspected 

Payment Errors 
Technical issues with the payment system, 
compatibility issues with the payment method used, 
or user error during the payment process 

Vehicle Errors Software or hardware malfunctions, charging port 
incompatibility, or battery issues. 

Charger Equipment Errors Software or hardware malfunctions, power supply 
issues 

Power Outage Power outage can cause EV charger to shup-down 
or interrupt an on-going charging process 

Remotely Unobservable 

Blocked Access to station 
Access to chargers could be physically blocked by 
gas cars, other non-charging EVs, fences, snow, 
flood water, etc. 

Physically Damaged 
Equipment 

External components of the EVSEs are prone to 
damage from various environmental factors.  

Logistical and interoperability 
Issues 

Membership requirements, payment incompatibility, 
equipment incompatibility, complicated EVSE 
instructions/operations, difficulty locating EVSEs, 
lack of EVSE availability, and poor cell service/Wi-
Fi availability make EV charging daunting to 
current and prospective EV drivers. 

Network Communication 
Failure 

Configuration errors, line damage, power loss or 
traffic spikes, and hardware failure anywhere along 
the communication network  
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A Charge Point Operator (CPO) is typically the stakeholder that is responsible for ensuring 

optimal ongoing operations of EV charging infrastructure. This includes managing the backend 
technologies as well as the communications between the backend system and the chargers. The CPO needs 
to ensure that all chargers under their control are operational enough to at least meet the uptime 
requirement of their jurisdiction. As such, they need to have systems in place to notify them of any 
problems with the chargers. Ideally, the CPO should monitor its chargers' operational statuses in real-time 
to discover and fix issues before the customer is aware of them. If CPOs effectively monitor their chargers 
using Open Charge Point Protocol, they can effectively detect most of the electrical and software failures 
given an operational communication network. However, they may be in the dark when it comes to failures 
caused by mechanical, communication and logistical factors. For instance, they may be unable to detect a 
physically damaged charging cable if the EVSE is otherwise operational and detected as so via their 
communication network. Or communication lags may cause charging station operators to be unaware of 
inoperable charging ports for substantial periods of time, resulting in inaccurate uptime calculations. 
Figure 1 illustrates the timeline of a charging attempt, accompanied by the possible charge failures that 
could occur at each stage of the attempt, separated by their level of visibility to CPOs. 

A failure that is invisible to CPOs may persist until an unlucky EV driver encounters a charger 
with the failure and reports it to the CPO. As such, these invisible failures exacerbate the EV charger 
reliability issue. This study aims to develop a predictive tool to help CPOs quickly detect these invisible 
charge failures. EV drivers are likely to habitually charge their EVs in the same public charging locations 
along their daily travel routes. Therefore, any sudden gaps within the usage pattern of a given EVSE 
location could reveal a technical or logistical failure that standard reliability monitoring protocols fail to 
capture. In this study, we have developed a novel tool that combines the powerful reconstruction 
capabilities of the Long Short Term Memory (LSTM) autoencoder with the long-term contextual awareness 
of an in-house naïve distribution method to learn the habitual usage patterns of EV chargers and effectively 
identify charging faults that may not be captured by traditional reliability measures.  

 

 
Figure 1 EV Charging Timeline and associated Failures 
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2 Literature Review  
 

Time series anomaly detection is a process of identifying abnormal patterns within a sequence of data 
points collected over time. There are various techniques that can be employed for time series anomaly 
detection, including traditional statistics methods, machine learning algorithms, deep learning algorithms, 
data mining techniques, and signal analysis [10]. These techniques span across six categories of general 
approaches, including forecasting, reconstruction, encoding, distribution, distance and isolation tree 
approaches. We considered techniques from all these classes to isolate and develop the optimal technique 
to detect anomalous usage patterns and thereby CPO invisible charger faults within EV charging time series 
traces.  

2.1.1 Forecasting Methods  

Time series anomaly detection using forecasting methods involves using a learned model to predict 
future values based on a current window of data. The predicted values are then compared to the actual values 
to determine the extent of anomalous behaviour. Forecasting models are typically trained in a semi-
supervised manner on normal data, and any deviations from the expected behaviour in the test dataset are 
identified as anomalous. The traditional statistical methods used for forecasting time series anomalies include 
Autoregressive Integrated Moving Average (ARIMA), Seasonal Autoregressive Integrated Moving Average 
(SARIMA), the median method, and Triple Exponential Smoothing (Triple ES) [11][12]–[14]. Forecasting 
methods that use deep learning include Long-Short Term Memory Autoencoders, Convolutional Neural 
Networks, Graph Attention Networks, and Echo State Networks [15]–[19]. These models are trained in a 
semi-supervised manner, where the training data without anomalies is used to learn the normal model of the 
data, which is then used to identify anomalies in the test dataset. 

2.1.2 Reconstruction Methods 

Reconstruction methods for time series anomaly detection techniques create a model of normal 
behaviour by encoding subsequences of a normal training dataset into a low-dimensional data space. This 
model is then used to reconstruct subsequences from a test dataset, and the difference between the original 
and the reconstructed time sequences is used to calculate an anomaly score. Traditional statistical approaches 
to reconstruction include Principle Component Isolation (PCI) [20]. Machine learning techniques include 
Principle Component Analysis (PCA) and Principle Component Classifier (PCC) [21], [22]. Deep learning 
approaches include autoencoders, variational autoencoders, LSTM-based variational autoencoders, 
Recurrent Neural Networks (RNN), Spectral Residual, and Generative Adversarial Networks (GAN) [23]–
[31]. Most of these methods are semi-supervised, meaning they are trained on normal data and use this to 
identify anomalies in the test dataset. 

2.1.3 Encoding Methods 
 

Encoding methods for time series anomaly detection utilize techniques to encode subsequences 
into a low-dimensional latent space and compute anomaly scores directly from the representations of the 
encoded subsequences. These techniques employ a range of methods to encode subsequences and calculate 
anomaly scores, such as inferring hierarchical grammar rules, using bitmaps, constructing probabilistic 
models, and building directed cyclic graphs. Anomaly scores are attributed to the points corresponding to 
the encoded subsequences in the latent space, and subsequences that are difficult to compress or have low 
frequency are considered anomalous. Stochastic learning techniques are used in encoding methods such as 
Hidden Markov Models (HMMs) and Dynamic Bayesian Networks (DBNs) [32], [33]. Meanwhile, data 
mining techniques employed in encoding methods include grammar-based compression, graph-based 
compression, suffix trees, and time series bitmaps. 
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2.1.4 Distribution Methods 
Distribution methods for time series anomaly detection involve estimating the distribution of the 

data or fitting a distribution model to the data, and then using probabilities, likelihoods, or distances to 
calculate anomaly scores for points or subsequences with respect to the prior calculated distributions. In 
contrast to other methods, the anomalous points or subsequences are judged by their frequency rather than 
their distance. To estimate Gaussian distributions or generic probability distributions of subsequences, 
various techniques such as histograms, copulas, and wavelet transforms are utilized. The anomaly scores 
are calculated based on the distance or likelihood of the points or subsequences with respect to the 
estimated distributions. Some of these methods assume a normal training time series for semi-supervised 
anomaly detection, while others are unsupervised and can detect anomalies in the tails of the distributions. 
Traditional statistical methods for distribution-based anomaly detection include extreme value theory and 
copula-based outlier detection [34], [35]. In the field of signal analysis, discrete wavelength transforms and 
maximum likelihood estimation are often employed [36]. Machine learning techniques, on the other hand, 
use Histogram-based Outlier Scores (HBOS) to identify anomalies [37]. Deep learning techniques for 
distribution-based anomaly detection use Normalizing Flows (NF) to model the data distribution and 
identify anomalies based on the estimated density values [38].  

2.1.5 Distance Methods 

Distance-based methods for time series anomaly detection involve comparing points or 
subsequences of a time series using specialized distance metrics. These methods assume that anomalous 
subsequences will have larger distances to other subsequences than those with normal behaviour. For the 
distance calculations, these algorithms may use either all other subsequences, some nearest neighbours, or 
certain cluster centroids as distance reference points. Some methods also perform a mapping of the 
subsequences into a multidimensional space before computing the distances. Distance-based methods are 
usually unsupervised and do not require training data. Nearest neighbour methods are a common example, 
where anomaly scores are determined by computing the distance of points or subsequences to their nearest 
neighbours. Infrequent or uncommon subsequences have large distances to their neighbours and are, 
therefore, scored as anomalous. Distance-based methods using traditional statistics involve identifying 
density- or cluster-based local outliers [39]–[41]. Machine learning methods using distance methods include 
k-means, K-nearest neighbours (KNNs), and Support Vector Machines (SVMs) [42]–[44]. Deep learning 
methods using distance methods include hybrid KNNs [45]. 

2.1.6 Isolation Trees 

Isolation tree methods for time series anomaly detection involve building a collection of random trees 
that partition test time series samples (points or subsequences). Anomalous samples are closer to the root of 
the tree and have shorter path lengths than normal samples, so their reciprocal values can be used as anomaly 
scores. Representative algorithms use traditional statistics and include Isolation Forest (iForest), Extended 
Isolation Forest (EIF), Hybrid Isolation Forest (HIF), Sub-IF, and Isolation Forest - Local Outlier Factor (IF-
LOF) [46]–[49]. The iForest algorithm is the basis for all algorithms in this category, and supervised variants 
include EIF and HIF. IF-LOF combines iForest and LOF. 

3 Data & Methodology  

3.1 Data Overview 
We use charging session data from EV chargers in two locations in California to demonstrate the 

tool developed in this study. The dataset consists of three public level 2 chargers from the San Francisco 
civic centre garage, and four DC Fast chargers from a highway corridor in Northern California. The session 
details for the chargers were obtained from their corresponding installation companies. However, to 
safeguard their identity and confidentiality, we have anonymized the name of the installation companies. 
Table 2 summarizes the charging session information for the DCFC, and level 2 charger analysed in this 
study. There are a total of 6018 level 2 charging sessions logged over 731 days between April 2021 and 
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January 2023 and 2341 DC Fast charging sessions logged over 263 days between January 2021 and 
October 2021. Figure 2 illustrates the utilization of each charger over the logging period.  
 

Table 2 EV Charger Data Overview 

Charging 
Level  Charger ID 

Number of 
Charging 
Sessions 

Total kWh 
Charged 

Days 
Logged 

Utilization 
Rate 

Level 2 
1 2841 18729 731 0.3031 
2 1098 12672 731 0.1466 
3 2079 29703 731 0.4205 

DC Fast 

1 736 9959 263 0.0446 
2 396 6790 263 0.0295 
3 627 12684 263 0.0521 
4 582 6407 263 0.1639 

 
 
 

 
Figure 2 EV Charger Usage Time Traces 

3.2 Methodology 
 

Building on our knowledge of the aforementioned techniques for time series anomaly detection, we 
have developed a novel approach that combines the powerful reconstruction capabilities of the LSTM 
autoencoder with the long-term contextual awareness of an in-house naïve distribution method to 
effectively identify anomalous usage patterns in EV charging time series data. 

3.2.1 Pre-processing 
 

To pre-process the charging session data in our dataset and convert it into time series traces, we 
iterated through the entire logging period of each charger on an hourly basis. Then, we assigned the 
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corresponding energy and number of charging sessions that occurred during each specific hour to that hour 
in the time series trace. This enabled us to capture the trends and patterns of EV charging over time and 
create a useful dataset for further analysis. 

3.2.2 Naïve Distribution Method Specifications 
In the naive method, we performed the following steps to detect anomalies in the charging 

behaviour of electric vehicle (EV) chargers. First, we calculated the daily charging probability distribution 
for each charger by taking into account the time of the day, the type of day (weekday or weekend), and 
whether it was a holiday. This allowed us to model the expected charging behaviour for each day and time 
slot. Next, we iterated through the time traces of the chargers with a window size of four hours. For each 
window, we checked if there were any logged charging sessions. If there were no logged sessions in the 
window and the joint probability of no charging sessions in that window was less than 0.5, we marked that 
window as an anomaly. The joint probability of no charging sessions in a window was calculated using the 
daily probability distribution of charging behaviour for the relevant time slot. If the probability of no 
charging sessions was low, it suggested that there might be an issue with the charger.  

3.2.3 LSTM Specifications 
 

LSTM Autoencoder is a deep learning-based approach that can be used to detect and classify 
anomalous events within time series data. The method is based on the Long Short-Term Memory (LSTM) 
network, which is a type of recurrent neural network (RNN) that is well-suited for modelling sequential 
data. We designed an LSTM autoencoder architecture in Keras. The autoencoder consists of two LSTM 
layers, one for encoding and one for decoding. The encoding LSTM layer takes the input sequence and 
reduces its dimensionality by encoding it into a smaller representation. The decoding LSTM layer then 
takes this encoded sequence and decodes it back to the original input sequence. The output of the decoding 
layer is compared to the original input sequence using mean squared error (MSE) loss function. 
 

In Keras, we implemented the LSTM autoencoder using the Sequential model class. The encoder 
part of the network was defined using the LSTM layer, while the decoder can be defined using the 
RepeatVector and LSTM layers. Figure 3 illustrates our model architecture for one of the Level 2 chargers 
in our study.  
 

 
Figure 3 LSTM Architecture 

Our model training dataset consisted of all data points excluding the last month of the data logging 
period for each charger. While our testing dataset consisted of all the data points in the last month of the 
logging period for each charger. We trained the LSTM autoencoder on the training set for each charger 
separately using backpropagation algorithm with the ADAM optimizer. We trained the model for 100 
epochs and a batch size of 32 for each charger. We used early stopping to prevent overfitting. Once the 
LSTM autoencoder was trained, we used it to detect anomalous usage patterns in the testing set. We fed the 
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testing set to the LSTM autoencoder and calculated the reconstruction error (MSE) between the original 
sequence and the reconstructed sequence. We then defined a threshold based on the reconstruction error, 
above which a sequence is considered anomalous. The anomaly threshold for each charger was set to the 
90th percentile value of the MSE of that charger's training data.  We evaluated the performance of our 
LSTM autoencoder model using various metrics such as precision, recall, F1-score, and area under the 
receiver operating characteristic curve (AUC-ROC). 

4 Results 
 

Figure 4 illustrates the detected anomalies using the naïve technique and the LSTM autoencoder for 
each level 2 and DC Fast charger in their study. The figures also include detected anomalies considering all 
charging activity in the two locations observed in the study. Table 3 reports the total number of anomaly 
hours detected by the naïve and LSTM approaches, including uptime reduction resulting from the detected 
anomalous hours. The uptime reduction resulting from the detected anomalous hours ranges from 4% to 
20%, depending on the charger. The range of the uptime reduction is greater for the DC Fast chargers than 
the Level 2 chargers; this is most likely because the usage patterns of DC Fast chargers are less predictable 
than the usage patterns of Level 2 charger.  

 
Figure 4 Detected Anomalies for Level 2 and DC Fast Chargers 

Table 3 Detected Anomalies for Level 2 and DC Fast Chargers 

Charging 
Level  Charger ID 

Naïve 
Anomaly 

Hours 

LSTM 
Anomaly 

Hours 

Mutual 
Anomaly 

Hours 

Total 
Reduction 
in Uptime 

(%) 

Level 2 1 52 20 4 10.00 
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2 44 32 4 10.56 
3 36 16 4 7.22 

Location 28 4 4 4.44 

DC Fast 

1 104 40 8 20.00 
2 0 44 0 6.11 
3 16 52 8 9.44 
4 40 0 0 5.56 

Location 12 24 8 5.00 
 

 

5 Discussion  
The goal of this study was to develop a tool that leverages the habitual usage patterns of EV chargers 

to effectively identify charging faults that may not be captured by traditional reliability measures. As such, 
we have developed a novel tool that combines the powerful reconstruction capabilities of the LSTM 
autoencoder with the long-term contextual awareness of an in-house naïve distribution to detect anomalous 
charging patterns that could indicate potential charger faults. Based on the developed tool, the uptime 
reduction resulting from the detected anomalous hours ranges from 4% to 20%, depending on the charger. 

The California Energy Commission (CEC) is developing uptime recordkeeping and reporting 
standards for electric vehicle charging stations that received public funding [3]. The standards will address 
charger interoperability and payment system failures prior to installation, while charger and network 
failures and internal payment system failures will be addressed through performance standards and 
monitoring [3]. Remote and physical monitoring options are being considered, such as implementing an 
operative status of charge, conducting random field inspections, and requiring preventive maintenance. The 
tool developed in this study could aid CPOs to effectively meet these impending reliability standards. 

CPOs can use the tool to monitor their charging infrastructure in real-time and detect any charge 
failures that may not have been captured via their internal fault detection protocols. Charge failures that are 
technically invisible to CPOs include network communication failures, blocked access, physically broken 
cable/equipment, and other unknown failures that cannot be captured via remote monitoring systems. By 
using this tool, CPOs can quickly detect these invisible charge failures and take the necessary actions to fix 
them before an EV driver encounters the same issue and reports it. The CPO can set up alerts and 
notifications to be sent out when an anomaly is detected, allowing them to take immediate action. 
Additionally, the tool can provide insights into the usage patterns of the charging infrastructure, allowing 
the CPO to make informed decisions about where to add more charging stations or when to perform 
maintenance on existing ones. 

It’s important to note that fault detection isn’t enough to the thwart all charging infrastructure 
reliability concerns. Lack of stakeholder profit incentives, unclear division of responsibilities, lack of 
accountability, and lack of performance monitoring can significantly delay or impede fault resolution [50]. 
As such, measures should be taken to better define business models, operational structures, and incentives 
that can enable the reliable operation of EV charging infrastructure. Governments should encourage CPOs 
to provide access to data for hosts and third-party service providers to facilitate fault diagnostic and 
performance monitoring platforms. CPOs should make the charging process frictionless by eliminating the 
need for initiating a charge or logging in using apps or RFID cards [51]. All charge points should be 
mandated to have roaming SIM network providers and standardized communication restoration and 
synchronization processes to reduce the frequency and duration of lost communication [51]. The business 
models of charger ownership and operation should be carefully considered, particularly around public EV 
charging tariffs to provide sufficient revenue for maintenance and servicing [51]. Stakeholders should 
Increase training and recruitment of accredited EV charging repair workforce to avoid increased times to 
repair charge points. Lastly, a single trusted source of aggregated EV status information should be made 
available, rather than users having to access multiple apps, such as an improved National Charge Point 
Registry with real-time status for all public charge points. 
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6 Conclusion 
 

Reliable and functional electric vehicle chargers are crucial for the widespread adoption of EVs. By 
proactively advocating for stricter EV charger reliability requirements, jurisdictions can ensure that the 
installed chargers are functional and meet the expectations of EV drivers, ultimately facilitating the global 
transition to EVs. While uptime is the most commonly used metric to measure the reliability of EV 
chargers, it fails to capture all the technological and logistical challenges within the charging ecosystem 
that ultimately determine the true reliability of chargers as perceived by consumers. This study has 
developed a novel tool that combines the powerful reconstruction capabilities of the LSTM autoencoder 
with the long-term contextual awareness of an in-house naïve distribution method to learn the habitual 
usage patterns of EV chargers and effectively identify charging faults that may not be captured by 
traditional reliability measures such as uptime. This tool can help CPOs quickly detect invisible charge 
failures that standard reliability monitoring protocols fail to capture, enabling them to effectively meet 
impending EV charger reliability standards and requirements. Based on the developed tool, the uptime 
reduction resulting from the detected potential charger faults ranges from 4% to 20%, depending on the 
charger. 

There are various ways to enhance the predictive capability of our tool. One possible method is to 
include supplementary data sources beyond habitual charging patterns, such as weather forecasts, traffic 
patterns, and power outage maps. This proactive approach may help identify potential charger failures 
caused by external factors before they occur rather than retrospectively. Additionally, a closer integration 
of the tool with the charging infrastructure may be beneficial. If charging stations were equipped with 
sensors capable of detecting cable damage or port malfunction, this information could be fed directly into 
the predictive tool, resulting in quicker identification of potential failures. Furthermore, if the tool were 
able to communicate directly with the charging infrastructure, it could trigger automated maintenance or 
repair processes to resolve issues more efficiently. Despite the significant progress made by our tool in 
identifying EV charger reliability issues, further improvement could be achieved by incorporating more 
data sources and seamlessly integrating with the charging infrastructure. While our tool has made 
significant progress in identifying EV charger reliability issues., we can further improve its capabilities by 
incorporating additional data sources and integrating it seamlessly with the charging infrastructure. 
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