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Executive Summary 

This paper proposes an adaptive variable-current wireless charging system for electric vehicles (EVs) using 

self-excited oscillation (SEO), in which the operating frequency can change adaptively and variable-current 

charging with two-stage constant-current (CC) phases is adopted. The proposed adaptive SEO wireless 

charging system exhibits higher power transfer capability when the battery resistance is smaller than a certain 

value compared with the traditional forced oscillating (FO) wireless charging system that operates on the 

fixed resonant frequency. The variable-current charging contributes to faster charging for the EV battery. 

The simulation results have verified the feasibility of the proposed adaptive variable-current wireless 

charging system. 
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1 Introduction 

As wireless power transfer (WPT) system shows the key advantages of low maintenance, flexibility, 
convenience and electrical isolation [1]–[4], it can be applied to many areas, such as wireless heating [5]-[8], 
wireless motor [9]-[12], wireless lighting [13]-[16] and wireless charging for implant applications [17]-[20]. 
In recent years, electric vehicles (EVs) are becoming popular and are replacing gasoline vehicles. The 
charging technologies for EV batteries [21]-[24] are of great significance, and it is the most possible way to 
become another mainstream charging scheme apart from the wired charging station. The possible charging 
scenarios include static wireless charging [25]–[27] in a wireless charging station or dynamic wireless 
charging [28]–[31] on a road where the EVs keep moving.  

No matter which scenario, the charging speed is one of the most important functions that draw consumers’ 
attention. Normally, the voltage level of the microgrid supplying the wireless charging station is fixed. Under 
this restriction, it is desirable to improve the power transfer capability of the wireless charging system. One 
of the ways to increase the transfer power capability is to improve the voltage level of the DC microgrid that 
supplies a wireless charging system, but an additional boost converter is required. Also, if the voltage level 
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is too high, the voltage class of the MOSFETs will be higher for wireless charging for EV batteries. For a 
traditional wireless charging system with a series-series (SS) topology and fixed operating frequency, the 
maximum charging current is also fixed.  

To improve the transfer power capability, instead of increasing the input DC voltage, the compensation 
scheme can be adopted, but this will require more compensation components and increase the complexity of 
the system [32]-[33]. The mainstream charging scheme is an initial constant-current (CC) charging phase and 
a subsequent constant-voltage (CV) charging phase. Most power is charged in the CC phase. It has been also 
researched that variable-current charging with multi-stage CC phases for batteries can promote fast charging 
[34], avoid severe temperature rise and extend cycle life [35]. Thus, variable-current charging should attract 
more attention. 

Also, to make the charging current and voltage follows the reference values, a proper modulation scheme is 
needed. There are many modulation schemes to regulate the output of a wireless charging system, such as 
burst firing control (BFC) [36]-[38], phase shift control (PSC) [39]-[42] and pulse frequency modulation 
(PFM) [43]-[46]. The PSC has the disadvantage of the hard-switching problem, which will reduce the system 
efficiency. The BFC can achieve ZVS and are free of hard-switching loss, but it will cause nonnegligible 
output fluctuations. PFM has the merit of fewer fluctuations and realizing ZVS easily. 

Also, the traditional WPT systems normally operate on the resonant frequency and the operating frequency 
is fixed. The WPT systems based on self-excited oscillation (SEO) [47]-[50] can make the system operate on 
the splitting frequency. Compared to the traditional WPT system, it can output higher power in the splitting 
region. This advantage can be utilized in wireless charging for electric vehicles as fast charging is desired by 
consumers. 

This paper proposes an adaptive variable-current wireless charging system using SEO so that the operating 
frequency can change adaptively. When the battery resistance is smaller than a certain value, the system is in 
the splitting region, and the proposed adaptive SEO wireless charging system exhibits higher power transfer 
capability compared with the traditional forced oscillating (FO) wireless charging system that operates on 
the fixed resonant frequency. Also, a variable-current charging scheme with two-stage CC phases is adopted. 
Autonomous pulse frequency modulation (APFM) and feedback control for the adaptive wireless charging 
system is adopted to achieve variable-current and CV charging. The simulation results have verified the 
feasibility of the proposed adaptive variable-current wireless charging system. 

2 System Configuration and Analysis 

2.1 System Topology 
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Figure 1: Proposed wireless charging system using PFM. 
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The proposed wireless charging system for EVs is shown in Figure 1, and the SS topology is adopted. Lt and 
Lr are the transmitter coil inductance and receiver coil inductance. Ct and Cr are the compensated capacitance 
of the transmitter side and receiver side. M is the mutual inductance. VDC is the DC source voltage. Vo is the 
battery terminal voltage. Io is the battery charging current. It and Ir are the transmitter current and receiver 
current, respectively. The transmitter current is sensed and provided to the controller. The controller will 
generate the driving signal that is dependent on the transmitter current. The transmitter current can help the 
system to operate on the SEO. Also, battery voltage and current are sensed to help realize the feedback control.  

The adaptive wireless charging system operates as SEO [47-50] instead of the traditional FO that operates 
on the fixed resonant frequency. When the WPT system operates as FO, the operating frequency is fixed and 
normally set to be the resonant frequency. When the inverter output is the 50%-duty-ratio waveform, the 
output power is: 
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Where 0 is the resonant frequency of the WPT system and 0 = 1/ ( )t tL C = 1/ ( )r rL C . 

When adopting the proposed adaptive wireless charging system, the system operating frequency is not fixed 
to be resonant frequency. When k ≥ kc = (R2+Ro)/(L2), the system is in the splitting region, and the output 
power is: 
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When k < kc = (R2+Ro)/(Lr), the system is not in the splitting region, the output power is the same as that 
of the FO-WPT system. 

By comparing (1) and (2), it can be concluded that the output power based on SEO is larger than that based 
on FO when the wireless charging system is in the splitting region. For wireless charging for EV batteries, 
most power is transmitted through CC phase. The charging current is normally large and therefore the internal 
resistance is small. It is easy to achieve k ≥ kc = (R2+Ro)/(L2), thus making the system easy to be in the 
splitting region. It is more beneficial to use adaptive wireless charging schemes, which means that the 
operating frequency will be the splitting frequency adaptively. 

2.2 Adaptive Variable-Current Wireless Charging 
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Figure 2: Control loop of proposed system. 

One way for faster charging is to make the inverter output voltage to be 50%-duty-ratio voltage waveform 
and the system is based on SEO. However, the charging current will keep changing as the battery internal 
resistance changes, and it is not the usual case. Constant current charging is still desired. When adopting one-
stage constant current charging, the charging current is limited by the voltage of the battery when the internal 
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resistance of the battery is constant and known, which will limit the battery charging speed. Multiple-stage 
CC charging will increase the charging power.  

The variable-current charging scheme with two-stage CC phases is adopted for battery charging, followed 
by CV charging phase. Still, the transferred power can be larger than the traditional FO wireless charging 
system. As shown in Figure 2, the transmitter current is sensed to help the system operate on the SEO. Also, 
FPM is incorporated to this SEO wireless charging system and thus it is termed autonomous pulse frequency 
modulation (APFM). It means that the operating frequency of the APFM will change autonomously 
according to the system parameters. The current feedback loop and the voltage feedback loop are adopted to 
help change the duty ratio of the APFM. When the system is in the CC phases, the charging current is 
controlled to be equal to the reference currents by regulating the duty ratio of APFM through a proportional-
integral (PI) controller. The battery internal resistance will increase during the charging process. In the first 
CC phase, the charging current is controlled to be Iref1 and keep constant until the battery voltage reaches the 
maximum value. Then the second CC phase begins, and the charging current is controlled to be Iref2 and keep 
constant. Iref2 is smaller than Iref1 so that the battery voltage will not exceed the maximum voltage value. 
When the battery voltage reaches the maximum value again, the system enters into the CV phase, and the 
charging voltage is controlled to be equal to the desired voltage Vref by regulating the duty ratio of APFM. 

Also, to make the system exhibit higher power transfer capability, it is normally designed that the system is 
in the splitting region when the system is in two CC phases. This is easy to achieve as the battery internal 
resistance is normally small in CC phases and k ≥ kc = (R2+Ro)/(L2) can be easily achieved. 

When the system is in the splitting region, the output power when adopting APFM is: 
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where D1 is the duty ratio of APFM 

The output power when adopting the traditional PFM scheme is: 
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where D2 is the duty ratio of traditional PFM. 

2.3 Charging Power Analysis 
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                     (a)                                               (b) 

Figure 3: Theoretical maximum charging power and maximum charging current against battery resistance when VDC = 
400 V. (a) Charging power. (b) Charging current.  
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Figure 4: Theoretical operating frequency against battery resistance. 

The load resistance ranging from 5 Ω to 50 Ω is considered. The transmitter and receiver coil inductance are 
200 H and both of their internal resistances are 0.5 Ω. The mutual inductance is 40 H. The primary and 
secondary compensated capacitances are resonant with the transmitter and receiver coil inductances, and the 
resonant frequency is 85 kHz. The DC voltage VDC is 400V. The maximum charging power and maximum 
charging current are plotted in Figure 3(a) and Figure 3(b) using the traditional FO wireless charging system 
and the proposed adaptive SEO wireless charging system. The maximum charging power and charging 
current are achieved when the AC voltage of the inverter on the transmitter side is 50%-duty-ratio square 
waveform. It can be observed, the maximum charging power and charging current of the system that adopts 
SEO is larger than the system that adopts FO when the battery resistance is smaller than a certain value (about 
25 Ω). 

The corresponding operating frequencies of these two schemes are plotted in Figure 4. It can be observed 
that the operating frequency of the proposed adaptive SEO wireless charging system is not fixed and is related 
to the battery resistance, while the operating frequency of the traditional FO wireless charging system is fixed 
and equal to the resonant frequency 85 kHz. Also, as shown in Figure 3 and Figure 4, when the battery 
resistance is larger than a certain value (about 25 Ω), the proposed adaptive wireless charging system is 
equivalent to the traditional FO wireless charging system as they are plotted in common (COM) using the 
black line. 

3 System Realization Consideration 

3.1 Signal Processing Circuit 
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Figure 5: Signal processing circuit. 
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Figure 5 shows the signal processing circuit of the proposed system. To achieve the SEO wireless charging 
system, the operation of the inverter is related to the zero-crossing point of the transmitter current. The 
primary current is first sensed through a transformer. Then through a compensation circuit and a zero-crossing 
comparator, the square wave can be obtained, and it can be processed by the field-programmable gate array 
(FPGA) board. It should be noted this square wave is related to the transmitter current. Through FPGA, the 
APFM signal can be generated. Finally, the inverted can be derived by sending the APFM signal to the driving 
circuit. 
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Figure 6: Waveforms for APFM generation. 

The detailed signal waveforms of the signal processing are shown in Figure 6. Vcomp is the output signal of 
the zero-crossing comparator. As the impact of the compensation circuit, the rising and falling edges will lead 
zero-crossing points of the transmitter current by a time tcomp. This leading time Tcomp is designed to 
compensate the delay of the driving circuit. Tcomp should be larger than the delay time tdelay of the driving 
circuit. By sending vcomp to the FPGA and programming FPGA, the FPGA board can generate the APFM 
signal. Through the driving circuit, the driving signal also leads the transmitter current tcomp-tdelay. Thus, zero-
voltage switching can be achieved. Also, the dead time tdead should be configured in the driving signals to 
avoid shoot-through problems. 

3.2 Start-Up Consideration 

For an SEO wireless charging system, the operation of the inverter is related to the transmitter current state. 
However, there is no current when the system is not operating. The system will be malfunctional during start-
up.  

Therefore, the transmitter current should be produced first. This can be achieved by making the system 
operate on the resonant frequency. The operating frequency is fixed and not related to the transmitter current, 
which means that the system is a FO wireless charging system. After the transmitter current is produced, the 
system can then be switched to the SEO wireless charging system. Both the fixed frequency driving signal 
and the APFM signal can be generated by programming FPGA. Through the driving circuit, the inverter can 
operate as required. 

4 Verifications and Discussions 

To verify the proposed adaptive variable-current wireless charging system for EVs, the circuit simulation is 
conducted. The designed parameters are shown in Table 1. The battery voltage in the CV phase is 320V in 
this simulation. Figure 7 demonstrates two cases of transmitter voltage and current. When the load resistance 
is 10 Ω, the duty ratio of the APFM is 15/17. When the load resistance is 20 Ω, the duty ratio of APFM is 7/9. 
The equivalent fundamental transmitter voltage can be changed by regulating the duty ratio of APFM, thus 
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regulating the charging voltage and current. Also, when the load resistance is 10 Ω, the simulated operating 
frequency is measured as 76.9 kHz, when the load resistance is 20 Ω, the simulated operating frequency is 
measured as 82.6 kHz, which means that the system is operating on the splitting frequency, which is 
consistent with Figure 4. 

Figure 8 shows the charging current and voltage when the battery resistance changes. The reference current 
in CC phase I is 32A and the reference current in CC phase II is 16 A. The reference voltage in the CV phase 
is 320V. The simulation results show that the charging current of CC phase I can reach the reference current 
32A and the charging current of CC phase II can reach reference current 16 A, which are both larger than the 
theoretical maximum charging current in Figure 2(b) (about 14A) when using the traditional FO wireless 
charging system. In the CV phase, the terminal voltage of the battery can maintain 320V. It should also be 
noted that the actual EV battery voltage is smoother during the charging process.  

The simulation results prove that the proposed adaptive SEO wireless charging system presents higher power 
transfer capability than the traditional FO wireless charging system, contributing to faster wireless charging 
for EV batteries. 

Table 1: Design specifications and parameters 

Items Value 

DC power grid voltage (VDC) 400 V 

Transmitter coil inductance (Lt) 200 μH 

Transmitter series compensated capacitance (Ct) 17.53 nF 

Transmitter coil internal resistance (Rt) 0.5 Ω 

Receiver coil inductance (Lr) 200 μH 

Receiver series compensated capacitance (Cr) 17.53nF 

Receiver coil internal resistance (Rr) 0.5 Ω 

Mutual inductances (M) 40 μH 

Operating frequency ( f ) 85 kHz 

Output capacitance (Co) 40 μF 
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Figure 7: Simulation results. (a) Example of transmitter voltage and current under CC charging mode when the load 
resistance is 10 Ω. (b) Example of output voltage and current under CV charging mode when the load resistance is 20 
Ω. 



EVS36 International Electric Vehicle Symposium and Exhibition      8 

 

 

Battery resistance (Ω)

O
ut

pu
t 

cu
rr

en
t 

(A
) 

O
ut

p
ut

 v
o

lt
ag

e 
(V

)

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400
CC 

Phase I
CC 

Phase II
CV Phase 

0

20

40

60

80

 

Figure 8: Output voltage and current against load resistance. 

5 Conclusions 

This paper has proposed an adaptive variable-current wireless charging system for electric vehicles. Two-
stage CC phases are adopted. The WPT system operates based on SEO. The operating frequency of the system 
will change adaptively. When the system is in the splitting region, the system will operate on the splitting 
frequency and the output power is larger than that of the traditional FO wireless charging system. Feedback 
control and APFM are adopted to help the system achieve CC charging and CV charging. The realization 
method and the signal details are also suggested. The simulation results have validated the feasibility of the 
proposed adaptive variable-current wireless charging system. 
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