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Executive Summary

Smart charging is a means of monitoring and actively controlling EV chargers to optimize the distribution
and consumption of energy, with a focus on peak-load avoidance. In our paper, we discuss requirements
on smart charging in the specific context of enterprise fleets. We consider smart charging as a component
of a more comprehensive system architecture and deal with problems related to the integration with other
functional modules and data sources. We present a practical software implementation of smart charg-
ing, which was realized as an extension of the open-source charge-point management solution ”Open
E-Mobility”1, and share evaluation results collected in a real-world deployment scenario.
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1 Introduction
In the past decade, the global market share of electric vehicles (EV) has been growing rapidly. A signif-
icant proportion of EVs of all types belong to enterprise fleets and are used for commercial purposes or
as company cars by employees. For example, in Germany 58% of all electric cars sold in 2021 were reg-
istered to companies 2. Companies are increasingly using their EV fleets for business-related, sometimes
even for mission-critical purposes, as EVs prove to be more and more reliable. To ensure high operational
readiness of EVs and reduce dependency on publicly accessible charging stations, many companies build
and operate their own EV charging infrastructures (CI) on their premises. Those facilities are also often
used by employees to charge privately owned EVs at work. Establishing and operating a CI poses a num-
ber of economic challenges to a company, including high capital and operating costs (TCO), volatile and
less predictable utilization (during and outside business hours), complex tax regulations, etc. [1, 2, 3].
In addition, businesses must take several technical boundaries into consideration, such as missing or
insufficient cabling at parking areas, grid power limitations, bad network connectivity, etc.
A properly designed software system can help enterprises master many of the operational challenges
during the entire life-cycle of charging stations and related other assets. A crucial task thereby is to
optimize the distribution of available, in many cases limited amount of power among multiple, often
heterogeneous EVs and chargers in a safe and cost-efficient manner.
In this contribution we present a Smart Charging System (SCS), which is a software system mainly
designed to serve the needs of companies that operate EV fleets and have one or more sites equipped with
charging stations. Technically, the SCS is part of the open-source system ”Open E-Mobility”, which is
used to manage thousands of charging stations at different locations meanwhile. It can be deployed and
operated as an on-premise system or as a containerized cloud solution and communicate with several
other systems via the provided interfaces.

1https://github.com/sap-labs-france/ev-server
2https://www.kba.de/DE/Statistik/Produktkatalog/produkte/Fahrzeuge/fz28/fz28 gentab.html?nn=3547466
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The remainder of the paper is organized as follows: In Section 2, we present the architecture of the SCS,
summarize the main functional and non-functional requirements, explain details of the core EV charging
algorithm and show its integration with various data sources in the current implementation. Section 3
describes major evolutionary steps of a three-year continuous development and evaluation effort that
took place at SAP Labs France in Mougins, France. Section 4 revisits publications dealing with related
aspects of EV charging. Finally, directions for our future work are outlined in Section 5.

2 System Design
The high-level architecture of SCS contains four main functional components as shown in Figure 1. The
main task of the component Smart Charging Core is to calculate and dynamically adjust the distribution
of available power among the active charging sessions in the given CI (see also in Section 2.2). The Data
Manager stores permanent data, such as the system configuration and master data about the capabilities
of the installed charging stations. It also maintains temporary information needed to carry out calcula-
tions, for example. As part of ”Open E-Mobility”, the SCS interacts with other components of the entire
charge-point management system. For example, it logs relevant events using the Logging interface and
provides information about the status of active charging sessions for EV drivers via the Mobile App as
well as for the operator of the CI via Browser/Portal. The SCS can communicate and exchange data with
further external systems, including Energy Management System (EMS), Enterprise Resource Planning
(ERP) or EV vendors’ Vehicle Backend, if they are available and made accessible within the CI-owner’s
IT-environment. These systems are mainly used by the SCS as data sources for ongoing calculations
related to load management. The required connections to these systems and to the charging stations on
site, incl. protocol- and API-specific messaging, are handled by the Communication Manager. The com-
ponent named Integration Layer is mainly responsible for collecting the required data from the different
connected sources (in a synchronous or asynchronous way) and for the preparation of the gathered data
for further processing by the core component (see details in Section 2.3).

Figure 1: High-level architecture diagram of the Smart Charging System (SCS)

The deployment of the four main components is sufficient to operate the SCS with basic functionality. In
this case, the Smart Charging Core works only with predefined configuration values, such as fixed safety
limits for power consumption, and does not take into account dynamic information, such as instantaneous
solar power generation. All additional internal and external components can be added optionally and
independently from each other to adapt the system to specific requirements in the given scenario.

2.1 Functional and Non-Functional Requirements
In designing and implementing the SCS, we focused particularly on the following capabilities as impor-
tant requirements for the system:
• Infrastructure protection: During the simultaneous charging of EVs, huge demand peaks can occur

damaging the infrastructure or even leading to outages. The SCS must deal with several related thresh-
olds at the same time, such as the mains connection power of the site, limitations of the local electrical
infrastructure according to fuse hierarchies, capacity of individual power lines and transformers, etc.
In addition, it is important to communicate with the local EMS, if deployed on site, to quickly react on
fluctuations of the available power caused by electricity consuming devices (e.g., machinery, HVAC
devices) or by energy producing assets (PV, CHP).
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• Management of heterogeneous equipment: A company’s CI can contain AC and DC chargers of
various vendors, types and versions. Considering only ”abstracted” equipment in the software sys-
tem can lead to severe problems, because ”real” devices behave differently with respect to their, e.g.,
charging curve characteristics, in-/output ratios, means of data provisioning, interfaces, configurable
parameters, etc. The larger the CI, the greater the cumulative effect of these factors can be.

• Support of EV-specific charging: During a charging session, the EV’s battery management system
may autonomously increase (or lower) the demanded power. As a reaction, the SCS may limit the
maximum available power, or provide the EV with additional power, e.g., by re-scheduling other EVs’
charging sessions. Accordingly, the SCS requires up-to-date information about connected vehicles,
incl. maximum allowed current/power, the number of phases used, etc.

• Context-aware prioritization: In the business context, a prioritization of charging sessions is often
needed: A salesperson, who wants to visit a customer and needs a ”full” battery within two hours, has
higher priority than another employee, who leaves the office at the evening. To determine prioritization,
data from different sources are required, e.g., planned arrival time (ERP), estimated departure time
(Forecasting), capacity of EV batteries (Fleet Management), current SoC (Vehicle Backend, Mobile
app, DC Charging Stations), etc.

• Interoperability and scalability: The SCS must seamlessly interact with other system components
over available interfaces and network protocols. It should also be able to serve CIs of different size
and allow adding (removing) locations to the overall setup.

• Flexibility: CI sites have different properties and characteristics, for example, with regard to the num-
ber and type of served EVs, usual charging times, local infrastructure limitations, etc. Consequently,
the structure and operational complexity of the SCS also varies between deployment sites. In order
to address this, the SCS needs to be built modular and thus adaptable to the given infrastructure, EV-
fleet, user needs and prioritization requirements. In general, the SCS must be able to work in different
complexity levels and enable adding/removing components independently from each other.

• Exception handling: In case of errors, e.g., due to malfunctioning charging stations or EVs, a proper
exception handling in near real-time is needed. Thereby, vendor- and device-specific error messages
must be captured and properly interpreted. It must also be ensured that failing or bad network con-
nectivity (HTTP, WebSocket, TCP/IP) does not jeopardize running charging sessions and missing data
is handled when planning new sessions. If there was an outage in the local electrical system, a safe
restart of charging procedures is required.

2.2 Smart Charging Core
The scheduling algorithm (see Algorithm 1) implemented by the Smart Charging Core component is
based on previous research results [4]. It shares the basically limited charging power at a given location
among connected EVs in a fair manner. The SCS triggers the calculation when a new charging session
starts, or an ongoing session ends. Scheduling can also be done periodically (e.g., every 15 minutes) or
when significant changes in the amount of available energy are detected (e.g., through solar production).
The algorithm initially creates a ”greedy” charge plan for each ev in evList for n time slots of duration
d represented in tsList. In a practical setup, for example, with n = 96 and d = 0.25 hours, a charge
plan for the next 24 hours can be created.
By executing Algorithm 2 for each EV (Line 2-4), the maximum possible charging current will be as-
signed to each EV - taking into account limitations of the given EV (ev.Imax) and the charging point
(cp.Imax). This is repeated for the next time slots until the sum of the EV’s initial charge capacity
ev.capinit (measured in Ah) and charged capacity ev.capcha reaches/exceeds the battery’s maximum ca-
pacity ev.capmax. Note that ev.capcha is calculated based on the charging current I assigned to the EV
and the total duration of passed k time slots.
To face potential conflicts that could occur if the total scheduled charging power within one or more time
slots exceeds power limitations of the charging infrastructure, some EVs’ initially created charge plans
must be adjusted, i.e., delayed. For that purpose, the EVs are ranked by executing Algorithm 3 in Line
5 (see explanation below). In order to determine the critical time slots, sumIts, the sum of charging
currents assigned to all EVs in evList in each time slot is calculated. A particular time slot will be
blocked (see Line 13) if the resulting value is not below the relevant technical limitation of the charging
site’s electrical system (called fuse limit). The sumIts is reduced by the previously given charging
current I of the lowest ranked EV (see Line 14), whose charge plan will be re-filled.
Afterwards, the EV with the lowest priority is rescheduled by applying Algorithm 2 in Line 15. The
reduction of the charging current to zero in all blocked time slots (see Line 6 in Algorithm 2) leads to a
delayed/prolonged charging of the particular EV, because the intended capmax value cannot be reached
otherwise. This shifting procedure is repeated for the next ranked EVs until the violation of the fuse limit
within the time slot is solved.
Note, that an adjustment of the charging current in the last unblocked time slot to match fuse limits more
exactly is implemented, but not included in the pseudo-code due to readability and space reasons.
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Algorithm 1 Scheduling procedure
1: procedure SCHEDULE(evList, tsList)
2: for i← 1 to evList.length do
3: FILLPLAN(ev[i], tsList) ▷ Algorithm 2 called
4: end for
5: PRIORITIZE(evList) ▷ Algorithm 3 called
6: for k ← 1 to tsList.length do
7: sumIts ← 0
8: for i← 1 to evList.length do
9: sumIts ← sumIts + evList[i].tsList[k].I

10: end for
11: index← 1
12: while sumIts ≥ fuse limit do ▷ Check if total current exceeds limit
13: tsList[k]← blocked ▷ Block time slot for rescheduling
14: sumIts ← sumIts − evList[index].tsList[k].I
15: FILLPLAN(evList[index], tsList) ▷ Reschedule EV with lowest priority
16: index++
17: end while
18: end for
19: end procedure

Algorithm 2 Procedure to fill EV charge plans
1: procedure FILLPLAN(ev, tsList)
2: for k ← 1 to tsList.length do
3: if tsList[k] not blocked & ev.capinit + ev.capcha(k) ≤ ev.capmax then
4: ev.tsList[k].I ← min(ev.Imax, cp.Imax) ▷ Assign lower value of CP/EV max current
5: else
6: ev.tsList[k].I ← 0
7: end if
8: end for
9: end procedure

Algorithm 3 Prioritization procedure
1: procedure PRIORITIZE(evList)
2: for i← 1 to evList.length do
3: mCapminSoC ← evList[i].capdes − (evList[i].capinit + evList[i].capcha)
4: ∆t← evList[i].tdep − evList[i].tnow
5: if mCapminSoC ≥ 0 then ▷ Assign higher prio if EV is below minimum SoC
6: evList[i].priority ← mCapminSoC/((∆t ∗ evList[i].Imax) + 1e− 8)
7: else
8: mCapmaxSoC ← evList[i].capmax − (evList[i].capinit + evList[i].capcha)
9: evList[i].priority ← mCapmaxSoC/((∆t ∗ evList[i].Imax) + 1e− 8)− 1000

10: end if
11: end for
12: sort (evList, priority) ▷ Sort according priority
13: return
14: end procedure
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The aforementioned prioritization of EVs for being potentially re-scheduled is done in Algorithm 3. To
rank EVs in evList, the missing capacity to reach the minimum SoC mCapminSoC (measured in Ah) is
calculated for each EV. It is the difference between the EV’s desired charge capacity capdes (calculated
from the desired SoC, in %, as entered by the user) and the sum of its initial capacity capinit on arrival
and the capacity charged since then capcha (Line 3). The urgency of charging depends on the available
time ∆t between departure time tdep (e.g., entered by the EV-driver) and current time tnow. If the
minimum SoC is not yet reached, the priority is calculated based on mCapminSoC , the urgency ∆t and
the maximum charging current Imax of the EV (see Line 6). The applied formula basically ensures that
EVs/drivers with higher energy demand and less time for charging will get a higher priority in average
and thus will not be taken as first candidates for being ”shifted”. The other EVs that already reached
their minimum expected SoC will be ranked based on the charge capacity that is missing to reach the
maximum capacity of the vehicle’s battery mCapmaxSoC . The chosen formula (see Line 9) gives in
average a higher rank for those EVs with higher energy demand and less available time to fully charge
their batteries. Accordingly, first candidates for re-scheduling will be those EVs that almost reached their
batteries’ maximum capacity and still have time to wait.

2.3 Integration Layer
To leverage the capabilities of the generic Smart Charging Core component and to configure the imple-
mented algorithms properly, information from several, heterogeneous data sources with regard to, e.g.,
APIs, security settings, data formats, etc. must be gathered. In case these sources are not deployed in
the given environment and/or (temporarily) unavailable, the algorithms must be provided with preset
values to ensure operational safety at any point in time. Similarly, a calculated charging plan must be
transmitted to all connected charging stations and the respective EVs, so that they can interpret received
messages (commands) and set configuration parameters or return data as requested. Within the SCS,
these data-oriented tasks are carried out by the Integration Layer. This component basically allows the
adaptation of the Smart Charging Core to the given context and operational environment. Note that the
SCS currently supports OCPP version 1.6 3. Accordingly, the Integration Layer creates and maintains
a Charging Profile for each connected, OCPP-compatible charging station within the CI. A fundamental
task thereby is to handle misbehaving or incompatible charging stations. For that purpose, the Integration
Layer monitors and reflects the current status of the CI, and can react on events that occurred. It can also
collect data about ongoing charging sessions in near real-time, and help re-distribute the available power
according to the actual power consumption of ongoing sessions. Below, the tasks and functionality of
the Integration Layer are explained in more detail.

• Error and Exception Handling: The SCS presupposes a proper implementation of OCPP by the
charging stations and the support of OCPP charging profiles. However, OCPP implementations vary
by charging station manufacturer and model. Compatibility problems often appear in specific setups
and cases, which were not known upfront. The Integration Layer offers different mechanisms to
master such situations. When collecting data to properly configure the core scheduling algorithm, the
capabilities of connected stations are checked. It is especially examined, whether each station is able
to work with the generated OCPP profiles. If not, the given charging station will be excluded from the
optimization, because it cannot be limited. In order to not endanger the electrical infrastructure, the
SCS will automatically adjust infrastructure limits for the next optimization cycles by subtracting the
maximum power that the incompatible station can draw. The adjustment of these limits only happens,
if the affected charging station is charging. Otherwise, the full capacity can be considered by the
optimization. A similar mechanism is applied if a charging station is rejecting or not answering to
charging profile requests, e.g., due to network issues. In this case, the faulty stations are collected
and handled as incompatible charging stations in a separate optimization cycle. At the same time, a
notification framework informs the administrators about the stations, which are not working correctly
in order to take action if the issue persists.

• AC/DC Handling: The Integration Layer supports both AC and DC charging sessions according to
their specifics. AC sessions can use one, two or all three phases depending on the given charging station
and connected EV. When triggering the Smart Charging Core, this information must be taken account
to determine the demanded charging current per phase. DC stations usually use all three phases, which
makes phase assignments redundant. For DC chargers, however, the efficiency values need to be taken
into account, because the conversion from AC to DC is carried out by the charging station and not by
the EV (as in case of AC chargers).

• Vendor-specific handling: Charging station vendors tend to vary in how they handle OCPP charging
profiles, for example by using their preferred measurement units (kW or Ampere). Therefore, the
Integration Layer provides a framework and mechanism to adapt a generic charging profile template
to vendor specific requirements.

3https://www.openchargealliance.org/protocols/ocpp-16/
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• EV-specific handling: With the help of the Fleet Management component, the SCS is able to retrieve
data about converters and batteries of almost every EV-model on the market, by using the Electric
Vehicle Database 4 and other similar repositories. To keep the vehicle data up to date, synchronization
jobs with the respective data sources are implemented. The data can be used to instantiate vehicles of
a certain type in Fleet Management. By assigning these vehicles to users, the system can determine
which EV model is charging at which station, without the need to establish a communication channel to
the EV itself. The extracted information (converter data, battery size) is used to send power- and battery
capacities to the Smart Charging Core without waiting for monitored consumption data and adopting
to it later. In addition, the system provides implementations of service interfaces offered by OEMs,
such as Mercedes, and also by third-party service platforms, like Tronity, to receive live information
about the current state of charge during AC-sessions. The stored data of the EVs is extended with this
information and can be provided for different purposes such as priority handling.

• Real-time behavior adaptation: The process of EV charging (both AC and DC) can be influenced by
many factors. The charging curve, i.e., the power drawn over time, depends not only on the type, age
and condition of the hardware on the vehicle side, but also on external parameters such as temperature.
In some cases significant deviations from the expected model-specific behavior can be observed when
charging a particular EV. A negative implication can be that EVs consume less power than expected
and allocated to the session when it started. Especially DC chargers manage power usage actively, by
monitoring the connected battery’s charging status. An efficient charging system must react to varying
(in general unpredictable) power curves. The Integration Layer captures the momentary power drawn
in the charging sessions and supports the SCS in calculating the real charge demand of a particular
vehicle. The implemented mechanism puts a buffer on top of the observed power output of the charging
station and uses the increased value as a new power limit for the session, whereby the new limit remains
below the connector’s maximum limit. By supervising whether the EV uses the buffer, the algorithm
can determine if the car would be able to draw more power and provide it to the session if available.
This way, it is also ensured that incorrect or missing vehicle data does not lead to the allocation of later
unused power capacity.

• Dynamic power limits: In most cases charging stations are operated in combination with other energy
consuming or producing devices. The amount of demanded and produced power within an electrical
system can heavily vary depending on season, time of the day, temperature, weather, etc. Setting a
fixed, safety-oriented power limit for the CI could make it basically independent from the fluctuations,
but lead to lower throughput and efficiency. For this reason, the SCS can be integrated with external
EMS that monitors and controls the overall electrical infrastructure on site. This integration should
be as flexible as possible, to support as many EMS-providers as possible. Thus, the SCS provides an
API endpoint to push energy data, but also integrates with external APIs to pull/request data from.
By taking into account EMS-data, it is possible to dynamically adapt the available power for the CI
according to the current solar production, building consumption, etc.

• Priority Handling: To support the prioritization of EVs (as shown in Algorithm 3) and the related
charging sessions, the SCS collects as much information as possible. For instance, the Mobile App
provides a dialogue for the driver to enter her planned departure time, required state of charge and also
the current state of charge (if the data is not provided by another integrated source or service). After
the data is collected, it is processed and passed to the Smart Charging Core, which uses the received
parameters to determine, which EVs are prioritized and can thus charge faster. This ensures a fair
sharing of power among trustworthy EV drivers and helps minimize inactivity times.

3 Implementation and Deployment in a Real-World Testbed
The SCS, along with other components of ”Open E-Mobility”, was implemented and tested iteratively
in a period of three years. The process included multiple development phases and related test cycles.
In each development phase, a new, encapsulated and independent component was added to the existing
system so that the improvements introduced were feasible and measurable. The evaluation of the system
in an operative environment took place at the premises of SAP Labs France in Mougins, France. It started
on April 1, 2020, which was a good time to start field testing because the charging infrastructure was
less stressed as usual (due to COVID-19) and users were therefore more tolerant of potential technical
problems. As time went on, the number of charging operations increased again, and so that the scalability
of the system could be tested as well. The testbed on site comprises currently 38 charging points (31
AC and 7 DC) from different vendors, incl. Schneider Electric, Legrand, ABB, Delta, IES, Webasto,
Ebee, Mennekes, Keba, StarCharge, Wall Box Chargers and Joinon. The CI has been initially set up and
maintained by local team members. The system served in total over 650 employees to charge their cars.
Overall 291 cars of various vendors (incl. Tesla, Jaguar, Kia, Renault, Volkswagen, Audi, Mercedes,
Hyundai, BMW, Fiat, Volvo, Nissan, etc) have been registered in the system as part of the EV-fleet.

4https://ev-database.org/
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In total, more than 25,000 EV charging sessions were executed successfully, consuming in total almost
700 MWh energy with a combined session time of almost 3400 days. The system protected the power-
constrained infrastructure well, as there were no overloads throughout the entire test period.
Before the deployment of SCS, it was possible to exceed the power limit of the site, for example, if a
large number of EVs had to be charged simultaneously. With the roll-out of the first version of the SCS
core system with its main components (i.e. without using any other external data sources), it was ensured
for the first time that the maximum power limit of the local infrastructure could no longer be exceeded.
However, this ”safety-first” strategy did not take into account the actual power limits of the vehicles’
converters. Instead, the algorithm assigned to each charging session the maximum charging current,
which was derived from the chargers’ maximum output power, e.g., 22 kW in case of AC chargers. The
actual assignment of the determined power to a particular charger takes place in updating the charger’s
OCPP Charging Profile using the message SetChargingProfile.req. As a result, the fixed maximum
power limit of the CI was reached quickly, so only a few chargers could operate in parallel while the
other charging stations received no power. The disadvantage of this approach is also illustrated in the
upper part of Figure 2. In the example, a Tesla Model 3 charges constantly at 11 kW, although the
connector has a maximum power of 22 kW. Without adjusting the limit to the actually demanded power,
the SCS statically allocates 22 kW for the entire session duration. The unused, yet blocked 11 kW are
”wasted”, i.e., cannot not be given to other stations at the same time. For instance, in a CI segment
created for testing with a power limit of 110 kW, only 5 EVs could be charged simultaneously.
Such inefficiencies motivated the incorporation of additional information into the charging-power calcu-
lation. The required data sources were added step-by-step by continuously extending and enhancing the
Integration Layer and related other components. When retrieving the connected EV’s actual demanded
power at the beginning of a charging session (using the OCPP message MeterValues.req), the allocated
power limit can be adjusted (lowered) by updating the OCPP Profile limit of the station. This adaptive
adjustment of the power limit for a session is shown in the lower part of Figure 2. As a result, the charg-
ing algorithm can re-distribute the otherwise unused power among other charging stations. For technical
and safety reasons, the actual limits per charger were calculated by adding a safety buffer to the observed
power consumption. In the example shown in Figure 2, the buffer is set to approx. 20%. Accordingly, the
limit for the charging session of the example Tesla Model 3 is set to 13.5 kW. Using this enhancement,
the number of parallel powered sessions increased significantly, since 8 (instead of only 5) EVs with a
power consumption of 11 kW each could be charged.
However, at the beginning of each session, the maximum connector power remains allocated and thus
blocked for other sessions at least until the next execution of the scheduling algorithm. The applied
safety buffer per station (approx. 2.5 kW in case of the exemplary Tesla) will not be usable by any other
session at all.

Figure 2: Power limit adaption to current consumption (screenshots from ”Open E-Mobility”)
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To address this issue, the component Fleet Management was introduced. It provides model-specific
master data about EVs and enables the assignment of particular EVs to drivers. When starting a charging
session at a charging station, the driver is authenticated and thus a linkage to the data about the respective
EV is established. By retrieving the electrical properties of the vehicle from the database, the maximum
charging power of the EVs can be used in the optimization from the beginning on. It was now possible to
assign 11 kW as the definite limit to the exemplary Tesla Model 3 without allocating any additional safety
buffer. Figure 3 shows a comparison of charging the same EV with the above discussed limit adoption
(in the upper part) and with the initially set model-specific power limit (in the lower part). In essence,
it became possible to utilize the freed power at other stations in parallel. On the 110 kW infrastructure
segment 10 (average) EVs could be charged at the same time without safety risks.

Figure 3: Utilization of vehicle-specific data in charging limit calculations (screenshots from ”Open E-Mobility”)

At that stage, the SCS was only able to efficiently distribute power within the CI according to a fixed
maximum power that was set as a strict upper limit. The limit was determined, as a proportion of
the maximum power consumed by the entire facility (mainly office buildings). Thereby, neither the
actual power consumption nor the power provided by the building’s PV system were considered as input
parameters. Since a large number of energy consuming devices are not always in operation, and/or do
not constantly draw a high amount of power, ignoring their actual energy consumption leads to a rather
low power limit assigned to the CI. Similarly, considering the actual on-site power generation can help
safely increase the CI’s maximum power consumption limit.
The integration of the SCS with the locally installed EMS solved this issue. The EMS-vendor provides a
REST API to query collected data about all connected and monitored devices, incl. solar panels and the
stationary battery installed in the building. The continuous retrieval of the actual power consumption and
production on site allowed the dynamic updating of the CI’s maximum power limit. Using this integration
feature, it was possible to allocate 50 kW additional power in average to the charging infrastructure. On
the above mentioned 110 kW infrastructure it was now possible to charge up to 15 EVs at the same
time on average. Figure 4 shows the power distribution of the testing facility while taking into account
building consumption, solar power production and charging station consumption.
By combining all of the above system components and associated ”live” data, the SCS was able to
efficiently distribute power, while treating each EV charging session equally. This ”democratic” ap-
proach is beneficial in some use cases, for example, when a logistics company’s delivery vehicles shall
be recharged during the night. However, in other settings, some vehicles must be served faster and/or
charge a higher amount of energy than others to fulfil business-related requirements. Some EVs/drivers
can have a longer stay at the charging facility and thus more time to charge than others. The vehicles’
total charging demand may vary depending on the planned driving distances or specific routes the users
need to drive till the next charge can occur.
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Figure 4: EV charging as part of the electrical infrastructure (screenshot from ”Open E-Mobility”)

To meet these requirements and preferences, the incorporation of further data items, such as the given
EV’s current and target SoC, as well as its planned departure time is required. These parameters can
be provided, for example, by the user manually, via the Mobile App (see in 1). If user authentication
is done without using the app, e.g., by presenting an RFID card at the charging station, default values
for the above mentioned parameters are taken. By passing the collected data to the Smart Charging
Core, the scheduling of sessions can be carried out according to users’ actual needs, and energy can also
be provided/distributed in a more efficient way. Figure 5 shows how prioritization effects the start of
powering a charging session in the system according to the users’ known planned departure time.
In the depicted example, two EVs, EV1 and EV2, arrive at 2:00 PM and start charging at the same time.
EV1 can stay till 6:00 PM, while EV2 must leave earlier, at 4:00 PM. Due to the limited available power
of approx. 11 kW (see the red line) only one EV can be charged at its maximum current. If EV1 would
be charged before EV2, EV2 would not have enough time to charge until it must leave, and EV1 will
be inactive after it was fully charged. If the system can take the planned departure times into account,
it schedules EV2 first, allowing to charge to full capacity before it has to leave at 4:00 PM. After that
EV1 can start and will have another two hours to charge until 6:00 PM. Viewing it from the involved
drivers’ perspective, in this particular example, the EV prioritization helps double the efficiency of the
power-constrained infrastructure.

Figure 5: Effects of prioritization on two concurrent sessions (screenshot from ”Open E-Mobility”)

In addition to the support of rather passive AC chargers, the SCS is also able to deal with DC chargers
that actively control charging processes while connected to an EV’s battery. Figure 6 shows an example
how our SCS combines different data to dynamically adjust the power limit (in red) during an ongoing
DC charging session.
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The information about the plugged vehicle’s battery (in the example a Jaguar I-PACE EV400 with battery
capacity of 90 kWh, and initial SoC of 30% which corresponds to 27 kWh) is used to initially set the
maximum allowed power, which is 104 kW in this case. The DC-charger in the example, which is
capable to deliver up to 150 kW, is regulated accordingly. The remaining 46 kW can be distributed
among other chargers (as long as the resulting total power does not violate other thresholds). Over time,
the car’s battery management system automatically reduces the power drawn, in order to protect the
battery. As a consequence, the power limit in the example session is re-adjusted (lowered) three times,
making an increasing amount of power available for other (newly started or ongoing) charging sessions.
The battery’s increasing SoC is further used to re-calculate prioritization decisions (the effects of those
are not depicted here).

Figure 6: Example charging process on a Delta Ultra-fast Charger (screenshot from ”Open E-Mobility”)

As illustrated above, the SCS, in combination with the external components and data, can almost triple
the efficiency of the power-limited charging infrastructure. To achieve similar results with a non-controlled
hardware solution, the infrastructure limit would have to be tripled. For the above test infrastructure, this
could require an increase in transformer power by 200 kW, which would result in very high costs.

4 Related Work
According to [5], smart charging can increase driver satisfaction by maximizing the average SoC across
all EVs. To reach this goal in the context of a company fleet, in [2] different charging strategies called
”baseline”, ”intelligent” and ”multi-location” were proposed. Based on a dataset from a company-fleet,
simulations showed that intelligent charging almost doubles the utilization of the infrastructure and the
available power compared to the uncontrolled baseline charging.
In recent years, a lot of research has been done on EV charging, and the results have been summarized in
various studies. For example, [6] reviewed seven case-study simulations in the context of smart charging
(including those in [5]). To identify challenges of commercial EV charging, in [7] charging strategies
were analyzed, including problems related to return-to-base scenarios. A comprehensive overview of
smart charging applications together with an overview of publicly known pilot projects is provided in
[8]. Case studies often include real-world testing in technically limited environments with a very small
number of EVs. For example, in [9] a possible design of a charging infrastructure for company locations
is presented, while considering charging preferences and trip data of a bakery in Germany. A three-day
experiment in a so-called ”mobility house” (containing student housing, a grocery store and a park-
ing garage) showed that rule-based peak-shaving and load-demand forecasting can reduce load demand
peaks by 25.4–38.5% while ensuring a minimum SoC of 50% [10].
The applicability of smart charging approaches that were designed specifically for charge-at-work sce-
narios, such as [11, 12], and various related scheduling strategies, e.g., [13, 14, 15, 16, 17] is usually
evaluated in simulations rather than operational environments. The same holds for [3], which proposed
a charging simulation model to support the design of a corporate charging infrastructure based on em-
ployees’ driving data. Further challenges in the context of scheduling charging processes and related
requirements for a software system are presented by [1].
In contrast to the above mentioned research, our smart charging approach and system is actively used to
power a large number of EVs in resource-constrained environments. Nevertheless, simulation is a useful
instrument to initially test and evaluate new features or the applicability of improvements before putting
them into operation. The smart charging approach presented in [4] has since been further improved and
evaluated using simulations, whereas the respective extensions have not yet been rolled out as part of
live system deployments. The smart charging algorithm (see in 2.2) was extended by pre-computing
day-ahead charging schedules using a mixed integer programming (MIP) model.
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Thereby, EVs receive their pre-computed schedule, if they are in time and have the expected SoC. Sim-
ulations show that randomness in real-life settings makes pre-computed schedules impractical and thus
prove the need for charge plan adaptation in (near) real-time [13]. Due to the non-linear charging be-
haviour of EVs in practice, an approach to predict the necessary charging power over the charging process
based on historical charging processes is proposed. It helps avoid gaps between charge plans and the ac-
tual power consumption of EVs, which can lead to better utilization of available energy [5]. To predict
EV departure times based on an existing dataset from a workplace reflecting employees’ daily routine
arrivals and departures, different regression methods can be used, incl. Oracle, Constant, Linear Model,
XGBoost and Artificial Neural Network. In the simulations XGBoost performed best with a mean abso-
lute error of 82 minutes. Smart charging simulation results showed how a higher prediction accuracy of
departure times leads to a higher mean fraction of minimum SoC [18]. Furthermore, an objection func-
tion for time-slot prioritization is implemented, but not yet actively used in production. It can be used for
ordering time slots by different prioritization objectives [13]: Fair share as the penalty cost of missing
SoC, depending on the fraction of the minimum SoC that an EV lacks and the gap between minimum
and full SoC. Energy cost for charging at a time slot with a high energy price. Peak shaving expresses
the penalty cost as a system usage fee for the highest consumption peak.

5 Conclusions and Future Work
In this paper, we presented an extension to the open-source charging-point management system ”Open
E-Mobility” that enables intelligent control of electric vehicle charging at enterprise sites. The Smart
Charging System has already been successfully deployed and used in various charging infrastructures.
Thanks to the system’s modular structure and the realized multiple interfaces to numerous external data
sources, different factors and data can be included in the calculation of charging plans, for both AC and
DC charging stations.
We validated the positive impact of this flexible design in a real-world environment at SAP Labs France
in Mougins, France. As illustrated by examples, the usage of specific information led to better power
utilization and helped increase the overall effectiveness of the charging infrastructure.
The SCS will be enhanced by several features and functions in the near future. Currently, for example, it
is not possible to create charging plans depending on variable or time-dependent electricity tariffs. The
mainly economic impact of such tariffs on the calculation of charging plans has been studied theoretically
in numerous publications, but has hardly been implemented in practice. Another aspect concerns the
realization and integration of predictive algorithms to forecast the departure time and power demand
of EVs. The current scheduler implementation assigns power limits to ongoing EV charging sessions
based on actual information, i.e., previously set data without taking potential future data and related
uncertainties into account. Regarding the communication with charging stations, it is also planned to
support OCPP version 2.0.
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