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Executive Summary 
Defining the relationship between the state of charge (SoC) of a vehicle’s battery and different measures that 

translate the vehicle’s charging profile is a challenge since there is not a direct relation between a vehicle that 

charges in a specific charging station. In this paper we propose a methodology, based on Pearson Correlation 

Coefficient (PCC) and machine learning, that allows to match charging curves of a vehicle and a charging 

station, within a fleet management environment. This enables energy prediction based on vehicle SoC 

through a regression model that takes the different energy-SoC associations obtained with the curve-matching 

process. 

Integrating this approach within a sequential matching-validation-training methodology, it was possible to 

enhance a linear model absolute error on energy calculation across different electric vehicles (EV) thus 

predicting better vehicle-specific energy values which in turn leads to better price estimations on EV charges 

and movement reconciliation. 

 

1 Introduction 
In an ideal fleet management scenario, both EV and electric vehicle supply equipment (EVSE) are monitored. 
It should then be possible to perfectly identify the vehicle associated to a specific charge in an EVSE. 
However, current EV-EVSE communication standards do not include any direct vehicle identification data  
(as will be the case once ISO15118 becomes widespread), and other identification methods (eg. RFID cards) 
while useful do not offer an error-free scenario. 

As the number of EV and EVSE grows exponentially [1] it becomes a challenge to associate them based 
solely on activity-aggregated metrics. What's more, establishing a connection between these two entities with 
activity-aggregated metrics does not take into account battery’s health or the evolution of the available 
charging network. Typical vehicle battery’s useful life is shortened throughout its use due to mechanisms 
already studied [2] and it affects its storage capacity which impairs the energy supplied over time. Different 
methods for charging infrastructure planning have already been reviewed [3] and the number of charging 
stations takes part as a decision variable and as a constraint. This means that horizontal scaling will be the 
path towards EV charging demand. 

In turn, the process of assigning one EV charging to a specific EVSE gets even more complex. This 
association should then be based on charging profiles due to their impact on EV charging strategies [4]. 
Charging profiles can be obtained by collecting data from charging transactions, i.e., initial SoC and starting 
time, and they can vary according to different factors [5]. 



 

EVS36 International Electric Vehicle Symposium       2 

However there is not a telematic measure of a battery’s energy level as opposed to SoC, which upholds the 
need to establish this association since the real energy values can only be obtained from the EVSE via data 
communication protocols such as the Open Charge Point Protocol (OCPP). With accurate energy values 
obtained from this association, it is possible to improve invoicing processes and predict energy supplied to 
an EV [6]. Another advantage comes from knowing if an EV has charged at a specific EVSE or not, allowing 
fleet managers to understand behavioural patterns on their network usage. 

Nevertheless, observing a charge from the vehicle and infrastructure perspective is also quite different: 

- For an EVSE, energy increase (meter values) is typically reported in 1 to 15 minute intervals and 
granular increments can be as low as 10 Wh. AC charging stations are unable to report SoC;  

- For vehicle telematics units, only SoC variations are reported in 1% increments, which for recent 
vehicles would correspond to roughly 500 Wh. In addition, intermediate variations are sometimes 
only reported in case the main vehicle ECU (electronic control unit) is “alive”, otherwise in some 
cases where start and end values are reports. Finally, location measurements (based on GPS) do not 
allow for enough precision to pinpoint a given EVSE but rather the overall location of the charging 
pool being used. 

In order to solve this problem, a curve-matching approach has been developed to connect EV and EVSE 
charging curves, as measured by their own data measurement and collection devices, using PCC to measure 
similarity between them. Similarity between curves can be determined in multiple ways. Dongsheng and 
Haiyun (2015) [7] used the discrete Fréchet distance method to measure similarity between charge-discharge 
curves in order to analyze battery’s state of health (SoH). However we are not measuring similarity between 
curves from the same source which means this method could produce low similarity values due to value 
offsets. Tao et al. (2017) [8] adapted the classical dynamic time warping (DTW) method by addressing the 
spatial transformations of the curves and applied it to study the degradation state of batteries through capacity 
curves from charging and discharging processes. DTW is specially useful in time-series data with a lot of 
variations along the time axis[9] which is not represented in our scenario since we are comparing charging 
curves that have the same time window. Value discrepancy can also impact the similarity estimation through 
this method. PCC on the other can provide an efficient similarity measure while not being sensitive to value 
offset, considering similar measured signal rates between reference and input sample [10], [11]. 

By connecting EV and EVSE charging transactions it is possible to build EV-specific models based on real 
energy values, enhancing the accuracy of energy prediction based on initial and final SoC. Other studies have 
used different regression techniques to model energy consumption based on multiple factors, including 
environmental and driving activity-related factors [12]–[14]. Fukushima et al. (2018b) [14] stated that due to 
this factors and the uniqueness of EV model power units, each EV should have its prediction model. In this 
case the goal is to predict energy based on an EV charging transaction so driving-related factors cannot be 
accounted as well as environmental ones since they does not impact the energy provided by the EVSE.  

Therefore this approach should enable a continuous process of curve-matching and training that helps in the 
first stage to identify and connect EV to EVSE charging curves and in the next stage to build EV-specific 
models that allow to better predict energy to be charged from SoC values (and hence obtain a seconday 
measurement for SoH).. 

The goal of this study and the model developed is to be able to demonstrate that these methods could be use 
for one or all of the following: 

- Automatically identify vehicles charging at a given EVSE (and vice-versa, i.e., in which EVSE a 
vehicle actually charged) 

- Measure degradation of Battery performance (Battery State of Health) from EVSE charging curves 
- Prove that accurate energy measurements can be estimated from SoC observation based on historical 

usage data 
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2 Methods 

The implementation was based on R language (version 4.1.3) using Rstudio. Table 1 shows the specifications 
of all EVs (#164) considered initialliy for this study. Error margin is considered as 2% of the nominal battery 
capacity of each model and this allows to compare different EV models and variants, as explained later in 
this section. Firstly a linear model considering the nominal battery capacity of each EV is built, using equation 
(1) where 𝑄! refers to the nominal battery capacity of an EV, 𝑆𝑜𝐶"and 𝑆𝑜𝐶# refers to final and initial SoC of 
an EV charging transaction, respectively, and 𝐸 refers to the total energy supplied to the battery for that 
charging transaction. 

 𝐸 = $%&!'$%&"
())

∗ 𝑄! (1) 

The computing approach can be divided in 3 steps: matching, validation and training. Each one of them is 
described below in the following subsections. The matching process was applied to 4 months of 2022 (April, 
June, July and August) for all EVs and this is where the process connects EV and EVSE charging 
transactions, a mandatory step that without this connection it is not possible to enhance a linear model as 
described in (1). In this step an EV model initially built is used to transform SoC values in energy thus making 
charging curves comparable. The validation is applied to each month of data and aims to clear mismatches 
that can happen during the previous step, serving as a filter to produce accurate inputs for the following step. 
The last process involves the training of multiple regression models using information from valid 
transactions. It is applied to valid data from the first 3 months and only 4 new EV models were used  to 
provide results for this article, comparing energy values for the final month. 

Table 1: EV specifications 

2.1 Matching  
The matching process follows these steps: 

1. Calculate total energy of charging transaction using an EV model; 
2. Limit search space of possible EVSE transactions by EV transaction’ starting time; 
3. For each EVSE transaction: 

3.1. Calculate geographic distance between EVSE and EV; 
3.2. Calculate total energy difference ; 
3.3. Calculate difference in starting time; 
3.4. Obtain EVSE charging curve; 
3.5. Preprocess EV and EVSE charging curves; 

Fuel Type Brand Model Battery capacity (kWh) Error margin # EV 

Electric 

Nissan 

Evalia 40 0.8 3 

Leaf 
39 0.78 24 

40 0.8 60 

Renault 
Zoe 

41 0.82 1 

44 0.88 7 

Kangoo 33 0.66 36 

Smart Fortwo Coupe 17.6 0.352 15 

Hybrid Golf GTE 8.7 0.174 18 
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3.6. Merge charging curves; 
3.7. Obtain EV energy curve using EV model; 
3.8. Obtain differences of energies and perform cumulative sum; 
3.9. Calculate PCC between both charging curves; 
3.10. Add starting time and energy difference penalties to PCC. 

4. Select EVSE transaction with highest final value (PCC + penalties). 

The search space limitation is considering only EVSE transactions between minus 2 minutes and after 5 hours 
of the EV transaction’ starting time. Geographic distance is calculated using distVincentyEllipsoid function 
from geosphere package with default parameters. There is a condition where if this distance is greater than 
500m the cycle goes for the next EVSE transaction, thus providing another layer to filter the search space 
and improving the algorithm’s efficiency. 

The preprocessing  of the charging curves attempts to correct artifacts that arise from telematics, such as 
invalid SoC values, and to perform subsets on both charging curves in order to limit the transaction time upon 
reaching maximum values. This is a crucial step since the timestamp-wise merge (through xts package) will 
be mainly affected by these artifacts and incorrect subsetting, which in turn will impact the PCC calculation 
due to an incorrect elimination of the time variable. EV’s energy curve is obtained using its model, initially 
represented in equation (1), providing SoC’ deltas as input. After the calculation we subtract from PCC result, 
0.005% of energy difference and 0.01% of the total hours between the starting times of transactions. 
Percentages values  for the differences were obtained empirically. 

2.2 Validation 
The validation process uses two different approaches, yielding different classification values, and it’s applied 
to one month of EV charging transactions. The first one takes into account Radio Frequency Identification 
(RFID) cards used in EVSE transactions, which has liability issues due to owners switching cards or lack of 
updates in the assignment to vehicles.  

In order to account for these challenges, there is a second and stringent validation approach that checks if the 
match respects the following set of conditions: 

• An energy factor (energy obtained from the model divided by the EVSE transaction’ energy) between 
0.85 and 1.15; 

• PCC >= 0.98; 
• Geographic distance <= 100 meters; 
• Unique EVSE transaction match, meaning there is only one match for that EVSE charging 

transaction. 

The stringent validation only takes into account matching characteristics, being agnostic to user-related 
variables thus making it a reliable method. The uniqueness of EVSE transaction match should be considered 
within the universe of one-month worth of all matches for all EV that belong to the same operational context.   

This validation approach will always be result-defining, meaning that if a charging transaction is validated 
through RFID card and it is not by this one, it is marked as in need for manual validation. This is established 
in order to have user-independent validated matches that can be accurate input for the next process.  

2.3 Training 

Validated matches from the previous process are selected for models’ training process. From each 
validated match it is possible to extract SoC variations from the charging transaction and their respective 
energy. By performing multiple combinations, the full spectrum of  initial and final SoC pairs of each 
charging transaction can be accounted as training data thus providing sample size even when an EV has 
few matches (between 5 and 10). EV with less than 5 valid transactions will not be accounted for this 
process.  
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Using the R packages caret and caretEnsemble, it is possible to train multiple regression models using 
the same cross-validation technique in one function call. Initialliy we perform data splitting in a 70/30 
ratio of training/testing using createDataPartition function. Regarding the cross-validation technique 
we used repeated cross-validation with k=10 and repeats=10. A list of 10 regression models from caret 
package (lm, svmLinear, enet, ridge, rlm, svmPoly, bridge, gamSpline, xgbLinear, knn) was built pre-
training so it is possible to change some parameters using “tuneGrid” argument of caretModelSpec 
function. The model gamSpline was trained using different degrees of freedom (from 1 to 4) while the 
others were run with default arguments. 

A model for each EV is the result of this process and its able to predict energy values from final and 
start SoC, such as (1), without the need to use the vehicle’s nominal battery capacity or fixed numerical 
variables. After the training process is complete a resampling method (n=10) is applied to get a 
collection of summary metrics on each model trained. The model with the lowest average Root Mean 
Squared Error (RMSE) is selected. Evaluation of the model is done by comparing energy predictions of 
valid matched EVSE charging transactions between current and new model. Model’s efficiency is 
calculated using (2) where 𝐸𝑀 equals Error Margin from Table 1 for a specific EV, 𝑛 refers to the 
number of valid charging transactions of an EV, 𝑦!%  refers to the predicted energy of ith valid charging 
transaction while the 𝑦" refers to the EVSE energy for the same transaction and 𝜂 is the model efficiency, 
a value between 0 and 1. The nominator equals the count of values that the absolute difference between 
predicted and observed energy are lower than the error margin established for an EV. 

 h =	∑ (|&!'(&"|)*+)#
"$%

-
 (2) 

3 Results 

3.1 Matching 
From a total of 9043 charging transactions to be matched, only 2256 of them were not able to connect with 
an EVSE charging transaction. From the number of EV chargings that got a match (6787), there are 5444 
unique EVSE charging transactions which means there is a maximum of 60.2% correct matching. It is 
possible to state that for this EV fleet, 60.2% (possible maximum) of the chargings were done at a charging 
station that was being monitorized. In turn, every five EV charging transactions there is at least two that take 
place outside of the EVSE network. Regarding the different number between EV chargings that got a match 
and the unique EVSE charging transactions, it is a consequence of the matching process itself. This can 
happen because there is no constraints that limit the search space to not already assigned EVSE transactions 
and there is no threshold for the final score of a match. It allows for all the possibilites to be accounted, even 
a match with low score can be a correct connection. Enabling the potential identification of problems that 
can arise from instruments used to collect data. 

Figure 1 shows an example of how the preprocessing step impacts PCC values when calculating the similarity 
between curves. Despite the timestamp-wise merge of both curves it is possible to see that in the not 
preprocessed EV and EVSE charging curves there is a mismatch between the peaks and evolution of energy. 
In this case, the EV did not communicate values while being charged, indicating only the initial SoC during 
the actual charging and final SoC at the end. By allowing a correct subset of EV charging curve based on 
initial and peak of supplied energy from EVSE it is possible to increase PCC value by 0.75, meeting a 
requirement for the stringent validation approach. 
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Figure 1: EV and EVSE charging curves without (left) and with (right) preprocessing 

 

3.2 Validation 
From a total of 6787 matches, 2866 (42.2%) were validated using both approaches while 3921 (57.8%) were 
marked as in need for manual validation. The number of correct validated matches is closer to the maximum 
value for correct matching that we could possibly achieve. None of the validated matches were solely 
validated by RFID cards which means the validation process was correctly implemented. Also the matching 
process has proven efficient to deal with the issues presented by RFID cards. However, this type of validation 
should be accounted for because it helps the fleet manager to identify incorrect card usage or incorrect 
information on its database. It should also not be the unique layer of validation due to the reasons above 
mentioned.   

Table 1: Summary statistics for EV valid transactions counts 

 

Within the 2866 valid charging transactions, only 132 EV have at least one valid match leaving 32 EV without 
inputs for the training process. This can be due to various factors: i) vehicles are not charging at EVSE 
monitored by the platform; ii) vehicles metadata is incorrect; iii) vehicle telematics units (or EVSEs) are 
sending wrong data (less likely). There are two possible approaches to generate new models for these EV. 
The first one is to manually validate the transactions that were marked as such in order to have data while 
the second focus on widening the collection period for the EV charging transactions thus providing new 
charges that can be matched.  

Table 1 represents the summary statistics for the counts of valid transactions by EV. 50% of EV have between 
9 to 32 valid charging transactions while there is 25% with less than 10 valid charging transactions. 19 out 
of the 132 EV have less than 5 valid transactions which is not enough to train a regression model. The same 
principle of the EV that did not have a single valid transaction can be applied in this case in order to have 
sufficient data. This leaves 113 EV for the training process, which is 68.9% of the total initial pool of EV.  

 Minimum 1st Quantile Median Mean 3rd Quantile Maximum 

# Charges 1 9 18.5 21.71 31.5 64 
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3.3 Training 
Table 2 shows the summary statistics of RMSE for the resamples of all models after training from caretList 
runs. The last column refers to the number of EV that got that model as selected to replace linear model. All 
models present very similar RMSE distributions which can be explained by the low number of input features. 
In this case we only had start and final SoC which do not bring a lot of entropy to the model or a lot of 
coefficients that need to be calculated.  

Introducing non-linear modelling seems to achieve better results with gamSpline presenting the lowest 
statistics overall (4/6). The number of EV selected is representative of this, nonetheless one has to take into 
account that gamSpline model had tuning parameters that allowed for flexibility during training process. This 
means that these models could fit data in a wider range of possibilities while other models had their 
parameters as default. Despite this, linear models behaved really well, presenting the second lowest average 
of RMSE statistics. By exploring tuning parameters for all models, it could be possible to understand the 
regularization of this type of models in order to enhance their RMSE values. 

20 EV had their model selected as rlm which supports this trend. Although xgbLinear model presents the 
highest summary statistics, one EV had the lowest average RMSE during the resampling process. This EV 
had the highest number of training data considering the combinations of initial and final SoC which could be 
a factor considering that there is a difference of 10000 samples between this EV and the EV with the second 
highest number of training samples.  

 

Table 2: RMSE summary statistics for the resamples of all models and number of EV with each model 

Model Minimum 1st Quantile Median Mean 3rd Quantile Maximum # EV 

lm 0.1047   0.2806 0.3856 1.0554 0.5267 60.2312 1 

svmLinear 0.1112   0.3028 0.4087 1.1147 0.5719 60.2317 0 

enet 0.1047   0.2788 0.3815 0.9611 0.5135 60.3297 4 

ridge 0.1047 0.2788 0.3815 0.9663   0.5135 60.2456 0 

rlm 0.1047  0.2798   0.3846   0.9154   0.5194 60.2311 20 

svmPoly 0.1164   0.2883   0.4204   1.2714   0.6912 60.245 0 

bridge 0.1051   0.2790   0.3883   1.1230   0.5257 60.2315 0 

gamSpline 0.1002   0.2402   0.3431   0.9743   0.4791 60.2312 87 

xgbLinear 0.1287    0.3965    1.0058    2.2314    2.3687 127.7420 1 

knn 0.1378   0.4157   0.9651   2.2294   2.3058 60.2520 0 

 

Figure 2 compares the linear and new models’ predicted energy values for all validated charging transactions. 
The equation Y = X line indicates that the energy predicted equals the same as a linear model (current model). 
Points under the line indicates that absolute new model predictions are lower than linear ones. This means 
that the prediction is closer to the real energy values from EVSE than linear ones.  

There are a total of 1868 “Under the line” and 956 “Above the line” points. The energy predicted by all new 
models improved the linear predicted energy in 66.14% transactions. Despite these results there are still 
values that are a bit concerning, regarding the new models predictions. For example, it is possible to identify 
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cases where linear absolute value is below 1 kWh and the new model predicted an absolute value above 2 
kWh. This can indicate that some outliers are present for some EV or that even the new model its not 
performing as it should, meaning a replacement is not advisable (or the metadata is simply incorrect or 
inaccurate).  

Figure 2: Difference between absolute linear and new models’ predicted energy values 

 
In order to classify the new model’s performance versus the initially built one, their efficiencies were 
calculated and compared between all 113 EV. Figure 3 shows the dumbbell plot between their efficiencies. 
There are 19 new EV models that have a lower efficiency compared to initially built ones. These models can 
be interpreted as outliers to the process. Efficiency is greatly influenced by error margin and total EV 
chargings matched which means low error margins produce small windows for differences between predicted 
and real values and if the model’s efficiency is calculated with a low 𝑛 value its efficiency is greatly decreased 
as well. If the new model does not capture the correct coefficients due to lack of input data it will be difficult 
to predict energy values below small error margins.  

There are 12 new EV models that had the same efficiency as current models while there are 82 new models 
with higher efficiency. An even efficiency is indicative that the current model, which is dependent on the 
battery capacity, is able to accurately predict the energy charged by an EVSE. However, batteries’ storage 
capacity is affected by their use which means in the long run this initially built models will no longer be 
accurate to predict energy values. This is represented by the new models that improved current model 
predictions regarding the same EVSE reference values, showing that for the majority of EV (82/113) an 
approach considering only battery capacity is not good enough. This may translate to some relationship to 
the battery health status because a linear equation based solely on its capacity can no longer represent the 
energy that is supplied to it.  
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Figure 3: Dumbbell plot of 113 efficiency differences between linear and new models 

 
 

To gain more insights on models comparison 10 boxplots were built representing 10 EV randomly sampled. 
Figure 4 shows their distribution of absolute error (energy predicted – EVSE energy), comparing linear and 
new models. The data represents 4 months of valid charging transactions (309 transactions: EV1 – 46; EV2 
– 9; EV3 – 9; EV4 – 33; EV5 – 62; EV6 – 15; EV7 – 14; EV8 – 54; EV9 – 27; EV10 – 40). The majority of 
new trained models show a skewness of absolute error distribution, however there are models with similar 
and slightly worst performance than a linear one. In example, we have EV7 with slightly higher median 
absolute error, maintaining a linear model for curve matching should be considered with some reserves that 
the approach should be reviewed later. EV9 has better results however it produces some outliers. This has to 
be taken into account if this model is going to replace a linear one as it can predict energy that will affect 
PCC values due to penalties. On the other hand we have the case of EV6 that the use of trained model allowed 
to have an improvement of more then 75% of the absolute error under 1 kWh compared to 0% from the linear 
model. This analysis should be done to every model in order to consider or disregard the need to replace 
linear ones.  
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Figure 4: Boxplot of absolute error across 10 different EV 

 

 

4 Conclusion 
This paper shows a new approach to build EV-specific models that predict energy values charged based on 
vehicle SoC, which possible within an environment where EVSE transactions are also monitored.  The study 
has revealed that an assessment has to be done for each built EV-specific model as it can produce models that 
do not improve over the simplified one based on the nominal battery capacity of an EV. This can also be due 
to poor identification and manual definition of a vehicle’s metadata. Nevertheless, the majority of cases have 
shown that their efficiency improved when applying this approach, indicating that it is possible to calculate 
energy values closer to reference (from EVSE) for charging transactions. With these models it is possible to 
predict energy values without knowing in which EVSE an EV charged or understand which EV is not 
charging in a managed EVSE network. This provides movement reconciliation for EV fleet managers and 
more accurate energy-related operations applied to charging transactions. In the next steps the authors will 
focus on establishing a relationship between these models and the battery’s State of Health (SoH), study the 
possibilities for fine-tuning of regression models and reimbursement operations for EV transactions outside 
monitorized networks (eg. home charging). 
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