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Executive Summary

To increase the efficiency of electrified vehicles, many energy management strategies (driving strategies)
have been proposed. These include both offline optimization techniques to identify a system’s theoret-
ical optimum and online optimization techniques created for onboard use in the vehicle. In this study,
a new approach for a predictive online strategy is presented, which is investigated on a D-segment ve-
hicle powered by a 48 V hybrid electric system in a P2 topology. It is demonstrated how this so-called
predictive Online Equivalent Consumption Minimization Strategy (ECMS) can achieve additional fuel
savings compared to a non-predictive Online ECMS by using map data. The investigations are limited to
the consideration of traffic signal (TS) positions on the upcoming route. Simulation results focus on the
interaction between the energy management strategy (EMS) and usable battery energy.

1 Introduction
Due to emission regulations and an increase in environmental consciousness in general, a broad variety
of alternative drive systems have been developed. These include 48 V hybrid electric vehicles (HEVs),
which have the benefit of greatly decreasing CO2 emissions at moderate system expense, especially for
inner-city driving. A 48 V system is described by component dimensioning, topology, and an energy
management strategy (EMS) [1]. The EMS has to guarantee a robust operation in various driving situa-
tions. An overview of the most common methods provided within [1–8] shows that EMS development
had been extensively researched over last years. In this paper, a novel approach for a predictive Online
ECMS is presented using real driving cycles. It is demonstrated how, in the case of a known journey
and the availability of map data, a predictive Online ECMS is established by using the present Global
Navigation Satellite System (GNSS) position. This is the case, for instance, when manually entering
a route into a navigation system or returning to a previously travelled path which is identified by in-
telligent algorithms. It is shown, how a predictive Online ECMS can achieve additional fuel savings
compared to a non-predictive Online ECMS by predicting recuperation events due to traffic signals (TS).
The simulation results focus on the interaction between the EMS and battery.

2 Related Work
EMS can be subdivided in multiple ways. They can be categorized into rule-based, optimization-based,
and learning-based techniques. Mixed forms also exist. Furthermore, offline and online methods can be
distinguished. Offline strategies are defined by the need for prior knowledge of the whole driving pro-
file. With this, a specific hybrid design is described for instance in terms of possible fuel consumption
savings for a certain cycle. The global optimum is determined for benchmark analysis. Online strategies
require only limited prior knowledge of the upcoming driving path. The ECMS which is investigated
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in this work can be assigned to optimization-based EMS concepts. Depending on the particular imple-
mentation, an ECMS is associated with either the offline or online techniques. Using an Offline ECMS,
the global optimum for time-invariant systems is found due to the equivalence to Pontryagin’s minimum
principle (PMP) [10, 11], where a so-called equivalence factor λ is found iteratively to solve the op-
timization problem [12, 13]. This Offline ECMS is frequently utilized to find the global optimum in
offline applications, especially due to the low computing effort [14]. The 2D-ECMS has been created to
investigate topologies with two traction motors [15]. For an Online ECMS, which was first published by
Paganelli et al. [16], the idea of an SOC-dependent control of the equivalence factor λ was effectively
implemented [9,17–26]. In addition, there are predictive Online ECMS techniques where predictions are
essential for the ECMS’s fundamental operation [19, 31]. However, it has also been demonstrated that
the introduction of predictive information can enhance a non-predictive Online ECMS implementation.
The following publications should be mentioned:

• In [36], step functions are used for adjusting λ by taking into account the future energy demand.
A 10% improvement compared to a non-predictive Online ECMS solution was reached.

• In [35], optimal recuperation is realized by predictive charging and discharging of the battery.
A 6 % improvement compared to a non-predictive Online ECMS solution is achieved.

• In [38], velocity prediction using a Convolutional Neural Network (CNN) for optimal λ determi-
nation is realized. A 0.2 % to 0.5 % improvement compared to the non-predictive Online ECMS
is presented.

• In [34], velocity prediction is used to determine SOC nodes. A 9.7 % improvement compared to
the non-predictive Online ECMS solution is given.

• In [37], λ adaptation is realized considering future energy demand with a dynamic prediction
horizon. An improvement between 0.3 % and 4 % compared to the non-predictive Online ECMS
is achieved.

• In [33], velocity prediction at intersections considering traffic signal (TS) state and traffic flow
leads to an improvement of 0-2 % compared to the non-predictive Online ECMS.

The presented prediction approaches show a wide range of possibilities for the development of predictive
driving strategies. When comparing the results, it should be noted that different boundary conditions,
vehicle models, and types of ECMS were used in each publication. The approach of [36], for example,
has only been tested on previously known very hilly routes and is therefore only useful in very spe-
cific scenarios. Therefore, a comparison and evaluation of the results is of limited value. However, for
the authors of the paper, these investigations form the basis for developing an own predictive approach.
In [29], an own approach utilizing the recuperation potential has already been published. It was shown
that noticeable CO2 reduction potentials occur in particular with limited battery capacity. Detailed in-
vestigations regarding predicting torque for predictive EMS are presented in [28] and [30]. However, it
was shown that the prediction of the future torque is very difficult and often only possible with a cer-
tain degree of uncertainty. Therefore, this paper presents a novel approach for a predictive Online ECMS
considering recuperation potentials using map data without the need for torque predictions. Additionally,
a comparison to an Online ECMS that is not predictive is provided.

3 Modelling
In vehicle simulation, forward and backward simulation can be distinguished. Forward simulation mod-
els are based on the physical causality of the system by comparing the target velocity with the actual
vehicle velocity using a driver model. A velocity can then be calculated for each time step based on
the acceleration brought on by the control input of the driver model. In contrast, a backward simula-
tion model, presupposes that the vehicle adheres to a predetermined profile of acceleration and velocity.
Therefore, no driver model is necessary [4]. The verified backward calculation model of a 48 V HEV
(P2 topology, see Figure 1) with an Offline ECMS and an iteratively calculated λ from the work of [14]
is used in this work.
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Figure 1: Topologies of HEVs in parallel configuration from [29].

In this model torque is calculated from the longitudinal dynamics of the vehicle. Hereby, the wheel radius
as well as the transmission ratios of the vehicle are taken into account. The correlations from longitudinal
dynamics are shown below. The different parameters and their corresponding units are listed in Table 1.

FWheel = Fair + Froll + Facc + Fslp (1)
Fair = cw ·A · ρ

2 · v2 (2)
Froll = m · g · cosα · fR (3)

Facc = m · a (4)
Fslp = m · g · sinα (5)

Table 1: Parameters and units of the driving resistances.

Drag Coefficient cw 0.3
Projected Frontal Area A 2.5 m2

Air Density ρ 1.2 kg/m3

Vehicle Mass m 1600 kg
Gravitational Acceleration g 9.81 m/s2

Rolling Resistance Coefficient fR 0.012

Internal combustion engine (ICE), electric motor (EM), and gearbox (GB) are modelled using stationary
maps. The 48 V battery is represented by a simple inner resistance model. Equations 6 and 7 are used
to compute the battery voltage under load Ubat and the corresponding battery current Ibat. Therefore,
the battery power Pem, the battery losses Pem,loss, and the power from auxiliary consumers Paux are con-
sidered. Moreover, the open-circuit voltage UOCV and the inner resistance Ri are required. In addition,
as a measure of energy deviation from the starting conditions, an energy deviation dE from reference
SOC is calculated (Equation 8). It is used as a criterion for a neutral energy balance. [29]

Ibat =
Pem + Pem,loss + Paux

Ubat
(6)

Ubat = UOCV (SOC)−Ri(SOC) · Ibat (7)

dE =

∫
UbatIbatdt (8)

The battery is of a nickel–mangan–cobalt/graphite cell type. Ri and UOCV are calculated using SOC-
specific component data. However, for simplification a large 48V battery (>10 kWh) with constant SOC
characteristics (SOC = 70%) is used within the investigations. Other effects, such as degradation of the
battery and its impact on CO2 emissions, are neglected [14]. The recuperated energy is determined using
a simplified logic considering the limits of the electrical components and the application of the mechan-
ical brake.

The studies are based on real driving cycles including four different drivers. These real driving cycles
were already used and presented in [28] and [30]. Hereby, relevant map data from Open Street Map
(OSM) was matched with the original GNSS tracks according to Figure 2 and Figure 3. For detailed
information on the preprocessing of the driving data, please refer to [30].
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Figure 2: Visualization of available driving data. From [30].
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Figure 3: Visualisation of identified Open Street Map (OSM) Data including GNSS track, traffic signal (TS), give
way (GW), and stop. From [30].

This publication is limited to the cycles of Driver 1, which covers 63 cycles of city driving, country
road driving, and highway driving of a total duration of 30 h and almost 3000 km (for more information
see [28]). For the design of a non-predictive Online ECMS, three representative cycles are selected
for each road type. These nine cycles should represent real operation as good as possible. The most
important characteristics are shown below (Table 2).

Table 2: Real driving cycles to parametrize non-predictive Online ECMS.

Road Type Avg. velocity in km/h Max. velocity in km/h Distance in km Duration in h Stand-still in %

City
28 69 6 0.2 26
19 60 4 0.2 39
25 62 11 0.4 21

Country Road
73 110 39 0.5 1
57 90 17 0.3 6
67 118 41 0.6 5

Highway
108 168 164 1.5 2
116 189 162 1.4 1
101 176 74 0.7 6

In Figure 4, the traffic signal (TS) density is shown for each cycle. Cycles marked in dark gray are
selected for the exemplary application of the newly developed predictive Online ECMS approach. The
chosen cycles are characterized by at least one TS per km.

4 Methodology
In the concept of an ECMS, an equivalent fuel consumption is calculated taking into account the fuel’s
lower heating value, Qlhv, and an equivalence factor λ to convert battery power into fuel power. Using
the equivalent fuel consumption, a cost function J is stated, where the optimization problem P is written
as follows [14]:
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Figure 4: Overview of the 63 driving cycles. As the investigations are limited to the consideration of TS positions,
TS per km are shown for each cycle. Cycles marked in dark gray are selected for the exemplary application of the
newly developed predictive Online ECMS approach. These cycles are characterized by at least one TS per km.

P : min
u

∫
J(u, x)dt (9)

J(u, x) = ṁfuel + λ
Pbat

Qlhv
(10)

At each time step, the ideal torque split is determined by minimizing P . In an Offline ECMS a constant
λ is found iteratively for time-invariant systems. For an online-capable implementation of the ECMS,
the idea of an SOC-dependent control of the equivalence factor λ was implemented in several studies [9,
17–26]. In this work, an average equivalence factor λOffline,avg is used for the Online ECMS. However,
this does not guarantee charge-sustaining (CS) behavior in online operations: Depending on the cycle,
the SOC trajectories result in an excessive charging or discharging of the battery. Therefore, a penalty
term is added. According to dSOC (difference between the real SOC and the reference SOC), the
value of the energy (λ) is either raised or lowered. As concluded in [26, 32], the trigonometric penalty
function is better than a proportional penalty function: It allows tiny deviations from the reference SOC,
but strongly penalizes significant deviations. Therefore, the penalty term consists of the penalty factor
kpSOC multiplied by the cubic derivation of SOC dSOC3 (see Equation 11). In terms of CS operation,
the deviation of the battery’s energy content at the end of the cycle is limited to a specific value. These
presumptions are used to establish the proper kpSOC for the non-predictive Online ECMS.

λ(t) = λOffline,avg − kpSOC · dSOC(t)3 (11)

In this paper, a novel approach for a predictive Online ECMS which considers map data to achieve
savings potentials compared to the non-predictive Online ECMS implementation is presented. The in-
vestigations are limited to the consideration of TS positions on the upcoming route. The appearance of
a TS within the upcoming horizon (represented by flagTS) has a direct impact on λ using an additional
parameter kpTS :

λ(t) = λOffline,avg − kpSOC · dSOC(t)3 − kpTS · flagTS (12)

A summary of the applied methodology is given by Figure 5.
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Figure 5: Applied methodology for predictive Online ECMS.

5 Results
First, the Offline ECMS is used to iteratively determine the optimum λOffline value for each of the nine
cycles selected (Table 2). An overview is given in Table 3. λOffline ranges from 2.55 to 2.88.

Table 3: Results from Offline ECMS for real driving cycles from Table 2.

Road Type λOffline CO2 (g/km)

City
2.61 134.16
2.55 139.87
2.61 144.42

Country Road
2.74 124.69
2.70 122.31
2.64 172.21

Highway
2.81 148.40
2.75 168.92
2.88 169.08

The non-predictive Online ECMS is parametrized according to [29]. In contrast to [29], the journey
itself and the Global Navigation Satellite System (GNSS) position are assumed to be known for this
predictive Online ECMS. It is also expected that the appropriate map data is available. Cycles with high
TS density are typically city driving cycles. Therefore, the parametrization of the non-predictive Online
ECMS focuses on city driving cycles. A λOffline,avg,city of 2.60 is chosen (Table 4). Parameter studies,
which will not be discussed in detail here, result in a kpSOC of 3.57 to achieve charge-sustaining (CS)
operation. For further information the reader is referred to [29]. A battery-specific parametrization of
the non-predictive Online ECMS is waived in this publication.

Table 4: Final parametrization for non-predictive Online ECMS.

λOffline,avg,city 2.60
kpSOC 3.57

In the next step, a predictive Online ECMS is to be parametrized to show additional savings potentials for
known routes with a high density of TS (Figure 4). Therefore, both parameters kpTS and horizon length
thorizon have to be specified. The investigations will be carried out for different battery sizes. Parameter
ranges to identify the best parametrization of kpTS and thorizon are given in Table 5.

Table 5: Ranges to identify optimal parameters kpTS and horizon length thorizon of the predictive Online ECMS
for a usable battery energy of 25 Wh, 50 Wh, 75 Wh, 100 Wh, 200 Wh, 300 Wh, 400 Wh, 500 Wh, and 1000 Wh.

min max
kpTS 0 5
thorizon in s 5 s 100 s

In Figure 6, CO2 reduction potentials in % over kpTS for different thorizon in the case of a usable
battery energy of 25 Wh are given for the selected cycles with high TS density from Figure 4. For
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formatting reasons, the plots are restricted to 16 out of 19 cycles. It is concluded that above a certain
value of kpTS , there is no further influence on CO2. For each cycle, there exists an individual kpTS
with a corresponding thorizon which leads to the best results. However, to ensure robust applicability,
a parametrization for the overall largest CO2 savings potential for each battery size can be determined
based on these investigations.
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Figure 6: Usable battery energy 25 Wh: CO2 over kpTS of several thorizon for predictive Online ECMS (16/19
cycles). Each graph represents a specific thorizon.

A behavior similar to that shown in Figure 6 is seen for a usable battery energy of 100 Wh in Figure 7.
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Figure 7: Usable battery energy 100 Wh: CO2 over kpTS of several thorizon for predictive Online ECMS (16/19
cycles). Each graph represents a specific thorizon.

In Figure 8, the velocity, the presence of a TS, and the SOC trajectories are presented over time for an ex-
emplary cycle (100 Wh usable battery energy). This includes both the non-predictive Online ECMS and
the predictive Online ECMS for the chosen λOffline,avg,city = 2.60 using the ideal kpTS and thorizon set-
ting for a usable battery energy of 100 Wh. Additionally, the SOC trajectory is given for a non-predictive
Online ECMS with a λ of 2.70.

In a first step, analysis focuses on both the non-predictive and the predictive Online ECMS for λOffline,avg,city

= 2.6. At t = 380 s, more recuperation potential is used, when λ is reduced by applying the predictive
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Online ECMS. At t = 200 s, by contrast, fuel consumption increases, as SOCmin is kept for a longer
time, which typically leads to additional operation of the ICE. At t = 300 s, there are no major effects on
the optimality of the EMS.

The strict reduction of λ whenever a TS is encountered can locally degrade the optimality of the pre-
dictive Online ECMS. The degree of degradation depends on how many TS actually do not affect the
velocity. At t = 500 s, for example, only minor influence of the existing TS on the velocity profile can be
detected. Apart from that, if the stationary phase is long enough, energy consumption by the auxiliary
consumers might overcompensate the recuperated energy so that no reduction of λ is needed. In these
investigations, however, auxiliary consumers are significantly lower compared to the rise by recuperated
energy (t = 400 s). Overall a well parametrized predictive Online ECMS leads to a reduction in fuel
consumption compared to the non-predictive Online ECMS.

In a second step, the SOC trajectory for λ of 2.70 should also be considered. A closer look at the non-
predictive SOC trajectorys of λOffline,avg,city = 2.60 and λ of 2.70 reveals that CO2 reduction potentials
by applying a predictive Online ECMS are highly dependent on the chosen non-predictive basic imple-
mentation: At t = 380 s, the additional energy hub for the use of recuperated energy is much higher for
λ of 2.70 than for λOffline,avg,city = 2.60. Anyway, both non-predictive Online ECMS implementations
reach the upper SOC limit multiple times and therefore both λ seem to be too high for the specific driving
cycle. It is concluded that significant savings potentials can already be achieved by an adequate choice
of non-predictive Online ECMS. At the same time, however, the additional savings from the proposed
predictive Online ECMS using recuperation potentials compared to a non-predictive implementation are
reduced.

As already stated before, Figure 8 reveals that λ reductions also occur when the battery is already dis-
charged before a recuperation phase is initiated (t = 200 s). Therefore, a dependence of kpTS on SOC
is introduced in a follow-up work. Thus, when SOC is around the lower limit, no reduction of the value
of the electric energy (λ) is allowed. Apart from this measure, also a dependence of kpTS on the occur-
rence of the recuperation potential in the prediction horizon could be added. If the TS is quite close, the
influence should be large. If the TS is in the later part of the studied horizon, the influence is reduced.
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In contrast to Figure 6 and Figure 7, there are no additional savings potentials for a predictive implemen-
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tation when a large battery (usable battery energy 1000 Wh) is used, see Figure 9. Here, a significant
deterioration is observed for all kpTS . This is in line with the findings already made in the context of [29]
that the considering recuperation potentials in a predictive Online ECMS does not lead to any noticeable
savings potential for large batteries compared to a well parametrized non-predictive Online ECMS.
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Figure 9: Usable battery energy 1000 Wh: CO2 over kpTS of several thorizon for predictive Online ECMS (16/19
cycles). Each graph represents a specific thorizon.

As can be seen in Figure 10, an overall improvement is observed when applying a predictive Online
ECMS. However, the savings potentials depend strongly on the usable energy content of the battery. The
highest savings potentials exist with a usable battery energy of 100 Wh. With lower battery capacities,
the savings potentials using a predictive implementation become less. For a usable battery energy larger
than 100 Wh, no more significant savings potentials are found. The corresponding parameters for each
battery size are listed in Table 6.
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Figure 10: Potentials of the proposed predictive EMS for different usable battery energies: Average CO2
reduction in % when applying the predictive Online ECMS compared to the non-predictive Online ECMS.
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Table 6: Optimal overall parameters of the predictive Online ECMS for different battery sizes including average
CO2 reduction potentials compared to the non-predictive Online ECMS (Figure 10).

Usable energy in Wh kpTS Horizon in s Reduction CO2 %
25 0.35 30 0.19
50 0.15 40 0.47
75 0.35 45 0.98
100 0.20 50 1.35
200 0.05 25 0.12
300
400 No additional CO2 reduction potentials by applying
500 the proposed predictive Online ECMS considering TS
1000

6 Conclusions
It is demonstrated that a predictive Online ECMS can achieve additional fuel savings compared to a
non-predictive Online ECMS by using map data. Within this investigations TS from the upcoming road
profile are considered in the predictive Online ECMS, whereby more than 1 % average savings potentials
compared to a non-predictive implementation were shown. The highest savings potentials are found with
a usable battery energy of 100 Wh. With lower usable battery energy, the savings potentials decrease
using the proposed predictive implementation. For batteries larger than 100 Wh, no more significant
savings potentials are found. Furthermore, a big dependence of the added value by implementing a pre-
dictive Online ECMS from the basic non-predictive Online ECMS is revealed.

For further investigations the methodology will be applied to a bigger dataset. As already stated a de-
pendence of kpTS on SOC and the occurrence of the recuperation potential in the prediction horizon
will be added. Apart from that, the predictive Online ECMS will be enhanced by using additional map
data, telemetry data or information from Radar, Lidar, and camera. Also Car-to-Car (C2C) and Car-to-X
(C2X) communication could be used to consider the status of the traffic signal. For an implementation
in a real vehicle, the upcoming velocity has to be approximated to transfer map information from the
distance domain to the time domain. Alternatively, a specific future distance could be used instead of the
specified time horizon.
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