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Executive Summary 
Battery-electric vehicles provide a pathway to decarbonize heavy-duty trucking, but the market for electric 

trucks is nascent, and specific charging requirements remain uncertain. This paper summarizes methods and 

findings from Charging Needs for Electric Semi-Trailer Trucks [1] wherein we leverage large-scale vehicle 

telematics data (>205 million miles of driving) to estimate the charging behaviors and infrastructure 

requirements for U.S. battery-electric semi-trailer trucks within three operating segments: local, regional, and 

long-haul. We model two types of charging—mid-shift (fast en-route charging) and off-shift (slow depot 

charging)—and show that off-shift charging at speeds compatible with current light-duty charging 

infrastructure (i.e., ≤350 kW) can supply 35% to 77% of total energy demand for local and regional trucks 

with ≥300-mile range. Megawatt-level speeds are required for mid-shift charging, which make up 44% to 

57% of energy demand for long-haul trucks with ≥500-mile range. However, the role of off-shift charging 

increases as the range for battery-electric trucks increases and when off-shift charging is widely available. 
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1 Introduction 
In November 2021, the United States updated its long-term strategy, committing to net-zero emissions by no 
later than 2050, with 50%–52% emissions reduction by 2030 [2]. Transportation accounts for 29% of U.S. 
greenhouse gas emissions, the highest share of any end-use sector [3], and in 2020, fossil fuels were 
responsible for 96% of total U.S. transportation energy use [4]. Despite accounting for <2% of vehicles on 
the road [5], heavy-duty semi-trailer trucks, with gross vehicle weight >26,000 lbs., are responsible for 15% 
of U.S. transport energy use and carbon emissions, second only to light-duty vehicles [6]. They are also major 
contributors of air pollutants (ambient fine particulate matter, PM2.5) associated with premature mortalities 
that disproportionately affect certain communities [7,8]. Despite this, the vast majority (>99%) of new U.S. 
heavy-duty vehicle sales in 2020 were diesel-powered [9]. 

Battery electric vehicles, once considered impractical for heavy applications, have experienced significant 
technology and cost improvements in the previous decade and are now seen as promising options to 
decarbonize heavy-duty trucking. For heavy-duty battery electric trucks (HDBETs) to replace conventional 
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diesel trucks, large investments in charging infrastructure (i.e., electric vehicle supply equipment [EVSE]) 
will be required. Today, most HDBETs in the United States charge using the Combined Charging System 
(CCS) standard, enabling DC fast charging up to 350 kW (~3 miles [4.8 km] of range added per minute 
assuming an average energy consumption rate [ECR] of 2 kWh/mile [1.2 kWh/km]). While well-suited for 
the light-duty BEVs it was designed for (providing up to 20 miles [32 km] of range per minute), it is generally 
recognized that CCS cannot provide the charging speeds required by many heavy-duty trucks. Thus, a new 
Megawatt Charging System (MCS) standard is being developed that is capable of charging at ~10 times the 
rate of CCS, up to 3.75 MW (~30 miles [48 km] of range per minute) [10]. Undoubtedly, MCS represents a 
significant advancement, but the actual requirements for HDBETs within various operating segments remain 
uncertain.  

This paper summarizes methods and findings from Borlaug et al. (2022) [1], which investigated HDBET 
range and charging infrastructure jointly, estimating the charging needs for various battery ranges within 
three separate operating segments: local, regional, and long-haul. The study first examines how increased 
battery range affects HDBET charging behaviors, comparing the relative frequency of mid-shift fast charging 
to off-shift slow charging. Next, it quantifies the charging speed requirements for HDBETs and show how 
these vary with respect to multiple factors including battery range, operating segment, and the availability of 
off-shift charging. Finally, geographic trends in charging demand within three separate region types: urban 
areas, rural interstate corridors, and rural non-interstate regions are observed. 

2 Data and Methods 

2.1 National Semi-trailer Truck Telematics Data 
The telematics data set used in this analysis contains hourly location traces, instantaneous speed, and vehicle 
odometer readings for 55,633 semi-trailer trucks from a single major original equipment manufacturer 
operating in North America over a 13-day collection period (July 1–13, 2016). In total, the data set covers 
~205 million vehicle miles traveled (VMT) (~330 million km) and includes travel in all states within the 
contiguous United States, as well as some travel in Alaska, Canada, and Mexico (Fig. 1). 

 

 
Fig. 1. Geographic coverage of semi-trailer truck telematics data: 205 million miles (330 million km) driven by 55,633 

tractors over a 13-day collection period in July 2016. Reprinted from [1] with permission. 

2.2 Simulating Heavy-duty Truck Charging 

2.2.1 Operating Segment Classification 

There is considerable variability in the daily operating requirements of semi-trailer trucks in the United 
States. In this study, truck segments are characterized by their maximum operating radius observed over the 
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collection period. Specifically, the vehicle’s operating radius refers to the maximum distance traveled from 
a central location (e.g., a home base or depot) over time. 

Trucks are classified as either local, regional, or long-haul operations based on their observed operating 
radius (OR), where local: OR ≤ 100 miles (161 km); regional: 100 miles < OR < 300 miles (161–483 km); 
and long-haul: OR ≥ 300 miles (483 km). Fig. 2 shows the distribution of trucks by inferred operating 
segment in the data set. Note that this distribution may not be nationally representative, as the trucks are all 
from a single manufacturer without guarantee that systematic bias was avoided during sampling. However, 
given large within-segment sample sizes, we assume that segment-level groupings are representative of the 
population of trucks within each operating segment. 

 
Fig. 2. Distribution of semi-trailer trucks in the data st by operating segment. Reprinted from [1] with permission. 

2.2.2 Shift Segmentation 

Truck operations are segmented into “on-shift” and “off-shift” periods based on observed vehicle activity 
patterns. A truck’s activity is classified as either driving or not (i.e., dwelling) on an hourly basis (data set 
resolution), where a “driving hour” is one where a truck drives ≥5 miles (≥8 km) and a “dwell hour” is one 
where a truck drives <5 miles. Once an activity is assigned for each hour and all trucks in the data set, a 
simple heuristic is applied to infer whether a truck is on-shift or off-shift at any time. The rule assumes that 
trucks are on-shift until a certain number of consecutive “dwell hours” are observed. At that time, a truck is 
determined to be off-shift (and potentially available to charge) from the first “dwell hour” in the sequence 
until the next “driving hour” is observed, indicating the start of a subsequent shift. In the baseline scenario, 
8 hours of inactivity is chosen as the threshold for classifying trucks as on-shift or off-shift. This assumption 
is conservative from an HDBET charging perspective, in that it limits off-shift charging opportunities to 
periods of extended inactivity rather than assuming frequent, shorter opportunities to “top off” are available. 
A sensitivity where this parameter is reduced to 4 hours, reflecting greater opportunity for off-shift charging, 
is also presented. 

Fig. 3 shows the cumulative distributions of average daily VMT and average daily off-shift hours, an 
indication of the opportunity for HDBET charging without disrupting existing operations, for all vehicles in 
the data set, partitioned by operating segment. These plots enable the observation of within-segment 
variations and between-segment differences in operating patterns. The average VMT/veh/day and average 
off-shift hours/veh/day for all trucks in the data set are 283 miles (455 km) and 14.8 hours, respectively, with 
local trucks driving the least, both in terms of mileage (145 miles [233 km]/veh/day) and duration (16.9 off-
shift hours/veh/day), followed by regional trucks (260 miles [418 km]/veh/day and 15.2 off-shift 
hours/veh/day) and long-haul (360 miles [579 km]/veh/day and 13.6 off-shift hours/veh/day). 
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Fig. 3. Cumulative distributions of (a) VMT/veh/day and (b) off-shift hours/veh/day (an indication of opportunities for 

charging). Reprinted from [1] with permission. 

Fig. 4 shows the distributions of average shift VMT and maximum shift VMT (i.e., each vehicle’s longest 
shift, with respect to VMT, observed throughout the collection period) within each operating segment 
assuming 8-hour dwell segmentation. Note that maximum shift VMT is a proxy for the range required for 
trucks to be electrified without any operational changes or mid-shift charging. Average shift VMT often 
exceeds average daily VMT for several reasons. First, trucks are not driven every day. In fact, we find that 
local, regional, and long-haul tractors are driven on average just 8, 9, and 10 of the 13 days in the collection 
period, respectively. Second, shift VMT distributions contain a long tail due to slip seating (where multiple 
drivers share one truck) or team driving (where two drivers ride together and take turns driving during long-
haul). In fact, nearly 8% of shifts exceed 1,000 miles in the baseline scenario (8-hour dwell segmentation). 
The median average shift VMT and median maximum shift VMT (i.e., the median per-vehicle maximum 
shift length observed over the collection period—indicative of the range required for 50% of trucks to be 
electrified without any operational changes or mid-shift charging) for local trucks is 229 miles (369 
km)/shift/veh and 331 miles (533 km)/shift/veh, respectively; for regional trucks it is 431 miles (694 
km)/shift/veh and 603 miles (970 km)/shift/veh, and for long-haul trucks it is 520 miles (837 km)/shift/veh 
and 791 miles (1,273 km)/shift/veh, respectively. 

 
Fig. 4. Boxplot distributions of (a) average VMT/shift/veh and (b) maximum VMT/shift/veh (indicative of the range 
required for semi-trailer trucks to be electrified without any operational changes or mid-shift charging). Reprinted 

from [1] with permission. 
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2.2.3 Charging Simulation 

Two types of HDBET charging are modeled in this study: off-shift and mid-shift charging. Off-shift charging 
is opportunistic, occurring when a truck is not being driven and causing no disruption to existing operations. 
In the baseline scenario, we assume that 75% of off-shift dwells are eligible for off-shift charging, assigning 
these opportunities at random to off-shift dwell periods in the data set. This assumption, however, is uncertain 
and depends on both the future availability of EVSE at common dwell locations and the driver’s willingness 
to seek these locations. Thus, additional high (100% of ≥4-hour dwells) and low (50% of ≥8-hour dwells) 
off-shift charging availability sensitivities are considered in response to this uncertainty. 

Mid-shift charging occurs during a shift when an HDBET’s battery state of charge drops to 10%. Since it is 
less convenient, mid-shift charging speeds are faster than off-shift charging to limit shipment delay due to 
electrification. To minimize the effect of charge power tapering when charging at high C-rates (i.e., charging 
rate relative to battery capacity), mid-shift “fast” charging events conclude when the battery’s state of charge 
reaches 80%. Additionally, it is assumed that HDBET drivers prioritize off-shift charging to mid-shift 
charging, such that a shift’s last mid-shift charging event will only charge enough to reach the next off-shift 
dwell location (preserving a 10% state of charge buffer). Long (e.g., ≥8-hour) dwell durations enable slower 
charging speeds for off-shift charging. With lower C-rates, the vehicle’s battery management system allows 
charging to higher states of charge without significant power tapering; thus, we assume that off-shift “slow” 
charging events fully charge an HDBET’s battery if time allows. A 10-minute buffer is added to each off-
shift charging event to account for the time taken to prepare for and conclude charging. For mid-shift 
charging, this buffer is reduced to 5 minutes given the increased time sensitivity. 

2.2.4 Charging Speed Requirements 

HDBET charging speeds must enable trucks to continue to operate efficiently without significant delay from 
slower refueling times compared to conventional diesel trucks. In this study, we introduce the concept of an 
allowable charging time margin and use it to estimate charging speed requirements for mid-shift fast HDBET 
charging. The allowable time margin is the maximum delay (as a percentage of total shift duration) that a 
fleet operator will endure to accommodate HDBETs. We compare allowable time margins of 5% and 10%, 
meaning that all shifts driven by an HDBET are completed within (at most) an additional 5% and 10% of the 
time taken for diesel trucks to complete them. To demonstrate, a 5% margin ensures that an 8-hour shift in a 
diesel truck can be completed within 8 hours and 24 minutes or less in an HDBET, while a 10% margin 
ensures that the same shift is completed within 8 hours and 48 minutes or less. 

The allowable time margin determines the total time available for charging during each shift. This is used to 
calculate the charging speed (in miles of range added per minute) required to finish the shift within the 
allowable time margin. Specifically, the charging speed required to complete shift 𝑖 within the allowable time 
margin 𝜇 is calculated as: 

        𝐶𝑆!"#$%&"'(" =
∑ *+!,#
$
#%&

(!,$-.
 (1) 

where 𝐶𝑀!,# are the miles of range added for charge event 𝑗 of 𝑛 total in shift 𝑖, and 𝑡! is the total duration 
(in minutes) of shift 𝑖. Once the required charging speeds are calculated for all shifts with at least one mid-
shift charging event (𝑛 ≥ 1), the recommended mid-shift charging speed is taken as the 90th percentile 
charging speed value within the set. This ensures, with >90% likelihood, that the recommended charging 
speed will keep HDBETs on schedule (within a 5% or 10% time margin compared to diesel) assuming no 
queuing for charging ports. In actuality, the time penalty for HDBETs will be less than the allowable time 
margin, since we assume that all on-shift dwells for conventional trucks (including breaks for diesel 
refueling) are replicated by HDBETs but that they do not charge during these periods. This assumption is 
required because the low (hourly) temporal resolution of the data obfuscates subhourly activities. 

For off-shift slow HDBET charging, we determine charging speed requirements for off-shift dwell periods 
observed in the data set under the assumption that the battery is fully recharged prior to the start of the next 
shift. For dwell 𝑖, the required off-shift charging speed is calculated as: 

𝐶𝑆$%%&'(!%)! =
*+!
)!&,-

 (3) 
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where 𝐶𝑀! are the miles of range that must be added during dwell 𝑖 to fully recharge the vehicle’s battery 
within dwell time 𝑡! (in minutes) minus a 10-minute buffer to prepare for and conclude charging. The 
recommended off-shift charging speed is taken as the 90th percentile charging speed value from the set of all 
off-shift dwells in the data. 

2.3 Geolocating Charging Demands 
Each simulated charging event is located geographically through linear interpolation of the most immediate 
preceding and succeeding geographic coordinates in the hourly data. Events are assigned as either urban, 
rural interstate, or rural non-interstate based on their location and proximity to the U.S. interstate highway 
system. Specifically, urban events refer to those that take place within a U.S. Census urbanized area (densely 
developed regions with population ≥50,000), rural interstate events are outside of an urbanized area but 
within 5 miles (8 km) of an interstate highway, and rural non-interstate events are outside of an urbanized 
area and not within 5 miles of the interstate network. Fig. 5 shows the full extent of these regions throughout 
the contiguous United States. 

 
Fig. 5. Geographies used to classify electric semi-trailer truck charging demand as urban, rural interstate, or rural non-

interstate within the contiguous United States. Reprinted from [1] with permission. 

3 Results and Discussion 

3.1 Energy Demands by Charger Type 
There are multiple benefits to charging HDBETs while off-shift, including greater convenience, reduced 
charging speeds, lower charging costs, and higher operating efficiency. In this study, we show that off-shift 
charging has increased potential to serve energy demands for trucks operating within a limited distance (i.e., 
local versus regional or national operations) and as HDBET range increases (Fig. 6). Specifically, the share 
of total HDBET energy from off-shift slow charging increases (displacing mid-shift fast charging) by 36%, 
33%, and 28% for local, regional, and long-haul HDBETs, respectively, as range is increased from 150 to 
500 miles in the baseline scenario. For 750-mile-range HDBETs, off-shift charging is the primary means of 
acquiring energy within all operating segments, representing 77%, 65%, and 56% of total energy demand by 
local, regional, and long-haul trucks, respectively (baseline scenario). Additionally, the average number of 
mid-shift fast charging events per shift decreases significantly across all operating segments, from 2, 4, and 
5.1 events per shift with 150-mile range to 0.1, 0.4, and 0.6 events per shift with 750-mile range for local, 
regional, and long-haul HDBETs, respectively (baseline scenario).  
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Fig. 6. (a) Share of electric semi-trailer truck (HDBET) charging demand via off-shift slow charging and (b) number of 

mid-shift fast charging events per shift by operating segment. Reprinted from [1] with permission. 

In addition to increased HDBET range, greater availability of off-shift charging reduces the demand for mid-
shift fast charging considerably. In the “High SC” scenario (where slow charging is available for all ≥4-hour 
dwells), the share of off-shift charging increases by 9%–25% depending on range and operating segment. In 
fact, we see that for a given HDBET range above 150 miles, high use of slow charging when the vehicle is 
not driving decreases the requirement for mid-shift fast charging more than an incremental upgrade in 
HDBET range (e.g., long-haul HDBET with 500-mile range can perform 67% of charging off-shift with high 
slow charge availability, whereas only 56% of charging is off-shift for a long-haul HDBET with 750-mile 
range and baseline slow charge availability). 

Longer-distance applications are more dependent on mid-shift fast charging, especially with low-range (150-
mile to 300-mile) HDBETs. With 500-mile HDBETs, 48% (High SC: 23%) and 57% (High SC: 33%) of 
energy demands for regional and long-haul trucks, respectively, are supplied by mid-shift fast charging. 
Increasing HDBET range to 750 miles reduces the share of total charging demand from mid-shift fast 
charging to 35% (High SC: 12%) and 44% (High SC: 18%) for regional and long-haul trucks, respectively. 

3.2 Charging Speed Requirements 
It is widely acknowledged that the power levels required to rapidly recharge HDBETs while on-shift will 
exceed those used by light-duty BEVs. However, empirical studies that estimate the charging speeds 
necessary to avoid significant disruption to existing freight operations are limited. Here, we show that mid-
shift charging speed requirements vary depending on (1) HDBET range, (2) truck operating segment, (3) 
availability of off-shift charging, and (4) shipment time flexibility (Fig. 7). In general, we find that greater 
charging speeds are required for longer-distance applications (e.g., long-haul) and for low-range HDBETs, 
since more mid-shift charging events are needed to complete shifts under these conditions. We also observe 
that greater availability of off-shift slow charging opportunities reduces fast charging speed requirements and 
that increased time flexibility (i.e., higher allowable time margin) can significantly decrease these 
requirements. Due to significant uncertainties around assumptions for the in-use energy consumption of 
HDBETs, which vary with respect to multiple factors including the gross vehicle weight (a function of the 
battery’s weight and average payload), road conditions, drive cycles, temperature, and drivetrain efficiencies, 
we present charging speed requirements in units of miles of range added per minute rather than the more 
familiar units of power (e.g., MW). This decision is made so that findings may be generalizable beyond a 
single set of assumptions. 
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Fig. 7. Mid-shift fast charging speeds (in miles of range added per minute) required to complete shifts within a time 

margin of (a) 5% and (b) 10% by electric semi-trailer truck (HDBET) range and operating segment. Adapted from [1] 
with permission. 

Low-range HDBETs (150- to 300-mile range) have significantly higher mid-shift fast charging speed 
requirements than high-range HDBETs (≥500-mile range). This is especially true for 150-mile HDBETs, 
where fast charging speed requirements are 21.9, 44.5, and 67.5 miles (35.2, 71.6, and 108.6 km) of range 
added per minute for local, regional, and long-haul, respectively (5% time margin, baseline scenario). In the 
baseline scenario with 5% time margin, operating segment-level charging speeds vary from 21.9 to 67.5 
miles (35.2–108.6 km) of range added per minute for 150-mile HDBETs (2.6 MW to 8.1 MW average, 
assuming 2 kWh/mile); 12.4 to 21.4 miles (20–34.4 km) of range per minute (1.5 MW to 2.6 MW) for 300-
mile HDBETs; 12.4 to 17.1 miles (20–27.5 km) of range per minute (1.5 MW to 2.1 MW) for 500-mile 
HDBETs; and 10.4 to 16.5 miles (16.7–26.6 km) of range per minute (1.2 MW to 2 MW) for 750-mile 
HDBETs. If fleet operators can accommodate up to 10% time delay per shift, fast charging speeds are 
reduced 54% to 82% depending on HDBET range and operating segment. This operational flexibility 
enables the electrification of longer-distance applications (e.g., long-haul) with lower-range HDBETs (e.g., 
300-mile range) and fast charging speeds of 8 miles (~13 km) of range added per minute (1 MW average, 
assuming 2 kWh/mile). 

Long dwell periods (≥8 hours) enable HDBETs to charge at much slower speeds while off-shift; however, 
there is an approximately linear relationship between HDBET range and off-shift charging speeds (Fig. 8). 
This is because with greater HDBET range, trucks can forego mid-shift charging, resulting in higher energy 
demands during dwell periods. We also find that, like with mid-shift charging, local trucks require the slowest 
charging speeds, followed by regional and long-haul. This can be explained through lower shift VMT (i.e., 
less energy required) and longer typical off-shift dwell periods (local: 15 hours, regional: 14 hours, long-
haul: 12 hours). 
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Fig. 8. Off-shift slow charging speeds (in miles of range added per minute) required to fully recharge electric semi-

trailer trucks (HDBETs) during off-shift dwell periods, by HDBET range and operating segment. Reprinted from [1] 
with permission. 

In the baseline scenario, off-shift slow charging speed requirements vary from 0.2 miles (0.3 km) of range 
added per minute (local, 150-mile HDBET) to 1.2 miles (1.9 km) of range added per minute (long-haul, 750-
mile HDBET). Assuming an ECR of 2 kWh/mile, this equates to 24–144 kW. Greater off-shift charging 
availability (i.e., charging during shorter dwell periods) increases the off-shift charging speed requirements 
to between 0.3 and 1.4 miles (0.5–2.3 km) of range added per minute (36–168 kW, assuming 2 kWh/mile). 
The only exception is for local 750-mile HDBETs, where charging speeds are reduced with high off-shift 
charging availability due to distributional differences in energy requirements of events (high availability of 
off-shift charging introduces additional short off-shift charging events with low energy requirements for local 
trucks). These charging power levels are well within the range of the current CCS standard (and future MCS 
standard) and are in line with EVSE for light-duty BEVs deployed today (≤350 kW). 

3.3 Geographic Charging Demands 
The spatial implications of freight movement and logistics lead to geographic trends in simulated charging 
demand. Fig. 9 shows the share of HDBET charging demand by operating segment and charging type (mid-
shift fast vs. off-shift slow) within each of the regions described in Section 2.6 (i.e., urban, rural interstate, 
and rural non-interstate). These results represent the baseline scenario. 
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Fig. 9. Share of electric semi-trailer truck (HDBET) energy demand by HDBET range and operating segment within 

different location types – urban, rural interstate, rural non-interstate. Reprinted from [1] with permission. 

In all truck operating segments, when HDBET range increases, charging demand shifts from rural to urban 
locations. This trend can be attributed to the increase in off-shift slow charging due to higher HDBET range 
and the fact that off-shift dwells are more frequently in urban areas. From the data, we find that 53% of all 
≥8-hour dwells are in urban areas compared to 34% and 13% for rural interstate and rural non-interstate, 
respectively.  

While all segments experience a shift in demand from fast to slow charging as HDBET range increases, local 
operations have greater demand in urban areas than longer-distance operations. Conversely, long-haul 
HDBETs have higher energy demands along rural interstate corridors (especially for mid-shift fast charging) 
than in urban areas, in contrast to light-duty passenger BEVs, which have higher energy demands near where 
people live and work. These trends are important for power system planning, as they indicate where HDBET 
charging might occur on the network and how charging patterns may interact with the operational 
characteristics of the freight system.  
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